On CSP Dichotomy Conjecture

Dmitriy Zhuk zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics Moscow State University

Arbeitstagung Allgemeine Algebra 92th Workshop on General Algebra Prague, May 27-29, 2016

1 What is CSP?

2 CSP Dichotomy Conjecture

3 Minimal WNU

4 Bijective WNU

5 Main Conjecture

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(\mathbf{X}_{i_{1,1}},\ldots,\mathbf{X}_{i_{1,n_1}})\wedge\cdots\wedge\rho_s(\mathbf{X}_{i_{s,1}},\ldots,\mathbf{X}_{i_{s,n_s}}),$$

where $\rho_1, \ldots, \rho_s \in \mathbf{G}$. Decide: whether the formula is satisfiable.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(\mathbf{X}_{i_{1,1}},\ldots,\mathbf{X}_{i_{1,n_1}})\wedge\cdots\wedge\rho_s(\mathbf{X}_{i_{s,1}},\ldots,\mathbf{X}_{i_{s,n_s}}),$$

where $\rho_1, \ldots, \rho_s \in \mathbf{G}$. Decide: whether the formula is satisfiable.

$$A = \{0, 1, 2\}, G = \{x < y, x \le y\}.$$

CSP instances:
 $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4,$

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(\mathbf{X}_{i_{1,1}},\ldots,\mathbf{X}_{i_{1,n_1}})\wedge\cdots\wedge\rho_s(\mathbf{X}_{i_{s,1}},\ldots,\mathbf{X}_{i_{s,n_s}}),$$

where $\rho_1, \ldots, \rho_s \in \mathbf{G}$. Decide: whether the formula is satisfiable.

$$A = \{0, 1, 2\}, G = \{x < y, x \le y\}.$$

CSP instances:
 $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, No solutions

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(\mathbf{X}_{i_{1,1}},\ldots,\mathbf{X}_{i_{1,n_1}})\wedge\cdots\wedge\rho_s(\mathbf{X}_{i_{s,1}},\ldots,\mathbf{X}_{i_{s,n_s}}),$$

where $\rho_1, \ldots, \rho_s \in \mathbf{G}$. Decide: whether the formula is satisfiable.

$$\begin{aligned} &A = \{0, 1, 2\}, G = \{x < y, x \le y\}. \\ &\text{CSP instances:} \\ &x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4, \text{ No solutions} \\ &x_1 \le x_2 \land x_2 \le x_3 \land x_3 \le x_1, \end{aligned}$$

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(\mathbf{X}_{i_{1,1}},\ldots,\mathbf{X}_{i_{1,n_1}})\wedge\cdots\wedge\rho_s(\mathbf{X}_{i_{s,1}},\ldots,\mathbf{X}_{i_{s,n_s}}),$$

0

where $\rho_1, \ldots, \rho_s \in \mathbf{G}$. Decide: whether the formula is satisfiable.

$$\begin{array}{l} A = \{0, 1, 2\}, G = \{x < y, x \le y\}. \\ \text{CSP instances:} \\ x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4, \text{ No solutions} \\ x_1 \le x_2 \land x_2 \le x_3 \land x_3 \le x_1, \ x_1 = x_2 = x_3 = x_3 \end{array}$$

Suppose (x = c) belongs to G for every $c \in A$. Only idempotent case!

Suppose (x = c) belongs to G for every $c \in A$. Only idempotent case!

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.

Suppose (x = c) belongs to G for every $c \in A$. Only idempotent case!

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.

Theorem[Ralph McKenzie and Miklós Maróti]

CSP(G) is NP-complete if no WNU preserving G.

The conjecture was proved

• |A| = 2, T.J. Schaefer 1978.

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\mathbf{A}| \leq \mathbf{13}$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\pmb{A}| \leq \pmb{13},$ D
mitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\mathbf{A}| \leq \mathbf{13}$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|\mathbf{A}| \leq 19$, Dmitriy Zhuk, AAA 97,,,

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\mathbf{A}| \leq \mathbf{13}$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|\mathbf{A}| \leq 19$, Dmitriy Zhuk, AAA 97,,,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\pmb{A}| \leq \pmb{13},$ D
mitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|\textbf{\textit{A}}| \leq 19,$ D
mitriy Zhuk, AAA 97,,,,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,
- $|\mathbf{A}| \leq \mathbf{29}$, Dmitriy Zhuk, AAA 99,, ...,

- |A| = 2, T.J. Schaefer 1978.
- $|\mathbf{A}| = \mathbf{3}$, Andrei Bulatov 2002.
- $|\mathbf{A}| = \mathbf{4}$, Petar Marković, 2014.
- $|\mathbf{A}| = \mathbf{5}$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|\mathbf{A}| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|\mathbf{A}| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|\pmb{A}| \leq \pmb{13},$ D
mitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|\textbf{\textit{A}}| \leq 19,$ D
mitriy Zhuk, AAA 97,,,,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,
- $|\mathbf{A}| \leq \mathbf{29}$, Dmitriy Zhuk, AAA 99,, ...,
- $|A| \leq 31$, Dmitriy Zhuk, AAA 100, Linz, Austria,

For an operation f by Clo(f) we denote the clone generated by f.

For an operation f by Clo(f) we denote the clone generated by f.

Absorption

A subuniverse **B** absorbs **A** if there exists an operation $f \in \operatorname{Clo}(w)$ such that $f(B, \ldots, B, A, B, \ldots, B) \subseteq B$ for any position of **A**.

• If f is binary, then the absorption is called binary.

For an operation f by Clo(f) we denote the clone generated by f.

Absorption

A subuniverse **B** absorbs **A** if there exists an operation $f \in Clo(w)$ such that $f(B, \ldots, B, A, B, \ldots, B) \subseteq B$ for any position of **A**.

• If f is binary, then the absorption is called binary.

1-consistency

A CSP instance is called 1-consistent if every x_i in any constraint takes all values from the domain of x_i .

For an operation f by Clo(f) we denote the clone generated by f.

Absorption

A subuniverse **B** absorbs **A** if there exists an operation $f \in \operatorname{Clo}(w)$ such that $f(B, \ldots, B, A, B, \ldots, B) \subseteq B$ for any position of **A**.

• If f is binary, then the absorption is called binary.

1-consistency

A CSP instance is called 1-consistent if every x_i in any constraint takes all values from the domain of x_i .

Subdirect

A relation $\rho \subseteq A_1 \times \cdots \times A_n$ is called subdirect if $pr_i(\rho) = A_i$ for every *i*.

An operation f is called cyclic if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

An operation f is called cyclic if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L.Barto, M. Kozik, 2012]

Let \mathcal{V} be an idempotent variety generated by a finite algebra **A** then the following are equivalent.

- \mathcal{V} is a Taylor variety;
- $\bullet~\mathcal{V}$ (equivalently the algebra $\boldsymbol{\mathsf{A}})$ has a cyclic term;
- \mathcal{V} (equivalently the algebra \mathbf{A}) has a cyclic term of arity \boldsymbol{p} , for every prime $\boldsymbol{p} > |\boldsymbol{A}|$.

An operation f is called cyclic if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L.Barto, M. Kozik, 2012]

Let \mathcal{V} be an idempotent variety generated by a finite algebra **A** then the following are equivalent.

- \mathcal{V} is a Taylor variety;
- $\bullet~\mathcal{V}$ (equivalently the algebra $\boldsymbol{\mathsf{A}})$ has a cyclic term;
- \mathcal{V} (equivalently the algebra \mathbf{A}) has a cyclic term of arity \boldsymbol{p} , for every prime $\boldsymbol{p} > |\boldsymbol{A}|$.

Corollary 1

For every WNU \boldsymbol{w} there exists a cyclic operation $\boldsymbol{w}' \in \operatorname{Clo}(\boldsymbol{w})$ of arity at most $2|\boldsymbol{A}|$ (which is also a WNU).

An operation f is called cyclic if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L.Barto, M. Kozik, 2012]

Corollary 1

For every WNU \boldsymbol{w} there exists a cyclic operation $\boldsymbol{w}' \in \operatorname{Clo}(\boldsymbol{w})$ of arity at most $2|\boldsymbol{A}|$ (which is also a WNU).

Corollary 2

For every WNU w there exists a minimal WNU $w' \in \operatorname{Clo}(w)$

An operation f is called cyclic if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L.Barto, M. Kozik, 2012]

Corollary 1

For every WNU \boldsymbol{w} there exists a cyclic operation $\boldsymbol{w}' \in \operatorname{Clo}(\boldsymbol{w})$ of arity at most $2|\boldsymbol{A}|$ (which is also a WNU).

Corollary 2

For every WNU w there exists a minimal WNU $w' \in \operatorname{Clo}(w)$

• It is sufficient to prove CSP Dichotomy Conjecture just for minimal WNU.

Dmitriy Zhuk zhuk.dmitriy@gmail.cc On CSP Dichotomy Conjecture

Lemma

Suppose **B** absorbs **A** with a binary operation $f \in Clo(w)$, **w** is a minimal WNU. Then $w(A, \ldots, A, B, A, \ldots, A) \subseteq B$ for any position of **B**.

Bijective WNU

A WNU w is called **bijective** if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have $w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.
Bijective WNU

A WNU w is called **bijective** if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have $w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.

Equivalent definition of a bijective WNU

A WNU w is called bijective if for any i and any tuple (a_1, \ldots, a_n) the operation $h(x) = w(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ is bijective.

Bijective WNU

A WNU w is called **bijective** if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have $w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.

Equivalent definition of a bijective WNU

A WNU w is called **bijective** if for any i and any tuple (a_1, \ldots, a_n) the operation $h(x) = w(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ is bijective.

Example 1: Quasi-linear WNU

 $w(x_1,\ldots,x_n) = x_1 + x_2 + \ldots + x_n$ where (A; +) is an abelian group

Example 2: A bijective WNU that is not Abelian.

Define a Mal'tsev operation and a WNU on $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$\begin{split} m^{(1)}(x,y,z) &= x^{(1)} + y^{(1)} + z^{(1)}.\\ m^{(2)}(x,y,z) &= x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1).\\ w(x_1,x_2,x_3,x_4,x_5) &= m(m(x_1,x_2,x_3),x_2,m(x_4,x_2,x_5)). \end{split}$$

Example 2: A bijective WNU that is not Abelian.

Define a Mal'tsev operation and a WNU on $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$m^{(1)}(x, y, z) = x^{(1)} + y^{(1)} + z^{(1)}.$$

$$m^{(2)}(x, y, z) = x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1).$$

$$w(x_1, x_2, x_3, x_4, x_5) = m(m(x_1, x_2, x_3), x_2, m(x_4, x_2, x_5)).$$

•
$$w(x,\ldots,x,y) = w(x,\ldots,x,y,x) = \cdots = w(y,x,\ldots,x) = y$$

Example 2: A bijective WNU that is not Abelian.

Define a Mal'tsev operation and a WNU on $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$m^{(1)}(x, y, z) = x^{(1)} + y^{(1)} + z^{(1)}.$$

$$m^{(2)}(x, y, z) = x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1).$$

$$w(x_1, x_2, x_3, x_4, x_5) = m(m(x_1, x_2, x_3), x_2, m(x_4, x_2, x_5)).$$

•
$$w(x, \ldots, x, y) = w(x, \ldots, x, y, x) = \cdots = w(y, x, \ldots, x) = y$$
.
• the WNU w is a minimal WNU

Fact

Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.

Fact

Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Fact

Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Lemma

Suppose $\rho \subseteq A_1 \times A_2$ is subdirect, the WNU w is bijective on A_2 , no binary absorption on A_1 , then $\rho = (B_1 \times C_1) \cup \cdots \cup (B_s \times C_s)$ where $A_1 = B_1 \sqcup \cdots \sqcup B_s, A_2 = C_1 \sqcup \cdots \sqcup C_s$.

Suppose

• We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n .

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n .
- No binary absorption on D_1, \ldots, D_n .

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n .
- No binary absorption on D_1, \ldots, D_n .
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n .
- No binary absorption on D_1, \ldots, D_n .
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.
- Factorize all the constraints, i.e. replace every predicate ρ by

$$\rho'(x_1,\ldots,x_n) = \exists y_1\ldots \exists y_n \ \rho(y_1,\ldots,y_n) \land (x_1,y_1) \in \sigma_{i_1} \land \cdots \land (x_n,y_n) \in \sigma_{i_n}$$

The obtained CSP instance we denote by Θ^{F}

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n .
- No binary absorption on D_1, \ldots, D_n .
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.
- Factorize all the constraints, i.e. replace every predicate ρ by

$$\rho'(x_1,\ldots,x_n) = \exists y_1\ldots \exists y_n \ \rho(y_1,\ldots,y_n) \land (x_1,y_1) \in \sigma_{i_1} \land \cdots \land (x_n,y_n) \in \sigma_{i_n}$$

The obtained CSP instance we denote by Θ^{F}

• Let
$$(S_1, \ldots, S_n)$$
 be a solution of Θ^F .

then the restriction of Θ to (S_1, \ldots, S_n) is 1-consistent.

 $(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$

$$(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

$$(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose $\rho \in A_1 \times \cdots \times A_n$, ρ is compatible with σ_j . Then ρ is compatible with σ_i for every *i*.

$$(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose $\rho \in A_1 \times \cdots \times A_n$, ρ is compatible with σ_j . Then ρ is compatible with σ_i for every *i*.

Lemma

Suppose $\rho \subseteq A_1 \times A_2 \times \cdots \times A_n$ is preserved by a WNU W, ρ is compatible with σ_n , $\operatorname{pr}_{1,2,\ldots,n-1}(\rho) = A_1 \times \cdots \times A_{n-1}$, no binary absorption on A_1, A_2, \ldots, A_n . Then ρ is compatible with σ_i for every i.

$$(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose $\rho \in A_1 \times \cdots \times A_n$, ρ is compatible with σ_j . Then ρ is compatible with σ_i for every *i*.

Lemma

Suppose $\rho \subseteq A_1 \times A_2 \times \cdots \times A_n$ is preserved by a WNU W, ρ is compatible with σ_n , $\operatorname{pr}_{1,2,\ldots,n-1}(\rho) = A_1 \times \cdots \times A_{n-1}$, no binary absorption on A_1, A_2, \ldots, A_n . Then ρ is compatible with σ_i for every i.

• Can we avoid the condition $\text{pr}_{1,2,\dots,n-1}(\rho) = A_1 \times \dots \times A_{n-1}$?

• By Inv(f) we denote all invariants of f.

- By Inv(f) we denote all invariants of f.
- A relation is called critical in a relational clone C if it is completely \cap -irreducible in C and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).

- By Inv(f) we denote all invariants of f.
- A relation is called critical in a relational clone C if it is completely \cap -irreducible in C and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).
- Equivalently, a relation ρ is critical in a relational clone C if it cannot be represented as $\rho_1(\ldots) \wedge \cdots \wedge \rho_n(\ldots)$, where for every i we have $\rho_i \in C$, $arity(\rho) > arity(\rho_i)$ or $\rho \subsetneq \rho_i$.

- By Inv(f) we denote all invariants of f.
- A relation is called critical in a relational clone C if it is completely \cap -irreducible in C and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).
- Equivalently, a relation ρ is critical in a relational clone C if it cannot be represented as $\rho_1(\ldots) \wedge \cdots \wedge \rho_n(\ldots)$, where for every i we have $\rho_i \in C$, $arity(\rho) > arity(\rho_i)$ or $\rho \subsetneq \rho_i$.
- Every relation can be represented as a conjunction of critical relations.

- By Inv(f) we denote all invariants of f.
- A relation is called critical in a relational clone C if it is completely \cap -irreducible in C and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).
- Equivalently, a relation ρ is critical in a relational clone C if it cannot be represented as $\rho_1(\ldots) \land \cdots \land \rho_n(\ldots)$, where for every i we have $\rho_i \in C$, $arity(\rho) > arity(\rho_i)$ or $\rho \subsetneq \rho_i$.
- Every relation can be represented as a conjunction of critical relations.
- A subset $C \subsetneq A$ is called a center on A if there exists a subdirect binary relation $\rho \subseteq A \times A$ such that $\rho \in Inv(w)$ and $C = \{c \in A \mid \forall d \in A : (c, d) \in \rho\}.$

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **•** \boldsymbol{w} is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- ◎ (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$: (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) $\in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **1 w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- (parallelogram property) ∀a₁, a₂, a₃, b₁, b₂, b₃: (a₁, a₂, b₃), (b₁, b₂, a₃), (b₁, b₂, b₃) ∈ ρ ⇒ (a₁, a₂, a₃) ∈ ρ.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **1 w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- (parallelogram property) ∀a₁, a₂, a₃, b₁, b₂, b₃: (a₁, a₂, b₃), (b₁, b₂, a₃), (b₁, b₂, b₃) ∈ ρ ⇒ (a₁, a₂, a₃) ∈ ρ.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

Theorem

Conjecture $1 \Rightarrow$ CSP Dichotomy Conjecture.

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **• w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- ◎ (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$: (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) $\in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

Theorem

Conjecture $1 \Rightarrow CSP$ Dichotomy Conjecture.

Theorem

Conjecture 1 holds if $|A_i| \leq 5$ for every *i*.

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **1 w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- ◎ (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$: (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) $\in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

Theorem

Conjecture $1 \Rightarrow CSP$ Dichotomy Conjecture.

Theorem

Conjecture 1 holds if $|A_i| \leq 5$ for every *i*.

Corollary

CSP Dichotomy Conjecture holds if $|A| \leq 5$.

Dmitriy Zhuk_zhuk.dmitriy@gmail.co On CSP Dichotomy Conjecture

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- \boldsymbol{w} is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- ◎ (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$: (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) $\in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.
- **9** no binary absorption or center on A_1 and A_2
- W/κ is quasi-linear for every i and every maximal congruence κ on A_i .
- There exists $c \in A_3$ such that $(\forall a_1 \in A_1 \exists a_2 \in A_2 : (a_1, a_2, c) \in \rho)$ and $(\forall a_2 \in A_2 \exists a_1 \in A_1 : (a_1, a_2, c) \in \rho)$

Then ρ is compatible with σ_1 and σ_2

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- \boldsymbol{w} is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- ◎ (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$: (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) $\in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.
- **9** no binary absorption or center on A_1 and A_2
- W/κ is quasi-linear for every i and every maximal congruence κ on A_i .
- There exists $c \in A_3$ such that $(\forall a_1 \in A_1 \exists a_2 \in A_2 : (a_1, a_2, c) \in \rho)$ and $(\forall a_2 \in A_2 \exists a_1 \in A_1 : (a_1, a_2, c) \in \rho)$

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

$$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$$

Theorem

Conjecture $2 \Rightarrow CSP$ Dichotomy Conjecture.

Theorem

Conjecture $2 \Rightarrow CSP$ Dichotomy Conjecture.

Theorem

Conjecture 2 holds if $|\mathbf{A}_i| \leq \mathbf{7}$ for every *i*.

Theorem

Conjecture $2 \Rightarrow CSP$ Dichotomy Conjecture.

Theorem

Conjecture 2 holds if $|\mathbf{A}_i| \leq \mathbf{7}$ for every i.

Corollary

CSP Dichotomy Conjecture holds if $|\mathbf{A}| \leq 7$.

I need your help with Conjecture 1.

I need your help with Conjecture 1.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **1 w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- (parallelogram property) ∀a₁, a₂, a₃, b₁, b₂, b₃:
 (a₁, a₂, b₃), (b₁, b₂, a₃), (b₁, b₂, b₃) ∈ ρ ⇒ (a₁, a₂, a₃) ∈ ρ.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

I need your help with Conjecture 1.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

- **1 w** is a minimal WNU.
- **2** ρ is compatible with σ_3 .
- (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$:
 (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) ∈ $\rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2 , or, equivalently,

 $(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$

Thank you for your attention
Algorithm

- 1-3 Preliminary steps. We repeat them if necessary.
 - 4 If all domains are unary, we get a solution.
 - 5 If there exists a binary absorbtion: Apply Absorbing Reduction, provide 1-consistency, and go to Step 4.
 - 6 If there exists a center: Apply Central Reduction, provide 1-consistency, and go to Step 4.
 - 7 If we get all functions after factorization: Apply "All Functions" reduction, provide 1-consistency, and go to Step 4.
 - 8 If the WNU \pmb{w} is bijective after factorization
 - solve the factorized CSP.
 - **2** if it has a solution, apply Linear Reduction and go to Step 4.
 - **③** if we can remove a constraint or split a variable to get a CSP instance Ω such that Ω^F has no solutions, we do this while possible.
 - if we can remove a constraint or split a variable to get a CSP instance Ω such that Ω^F has a solution (S_1, \ldots, S_n) but the reduction of Ω to (S_1, \ldots, S_n) has no solutions, then we consider the reduction and go to Step 5.
 - if Θ^F has no solutions and we cannot remove or split, then we reduce the original domain A_i to A'_i .