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Quasivarieties

An algebraic structure is a nonempty set endowed with a set of
operations and relations.

Let σ be a signature and K be a class of algebraic structures of
type σ.

A quasi-identity of σ is a formula

∀ x A1(x) & . . . & An(x) −→ A(x),

where A1(x), . . . , An(x), A(x) are atomic formulas.

A quasivariety is a class defined by quasi-identities.
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Quasivarieties

A quasi-equational theory of K is the set of quasi-identities true
in K.

Q(K) the smallest quasivariety containing K, i.e. the class defined
by the quasi-equational theory of K.

Q(K) = SPPu(K).

(all classes are abstract).

A quasi-equational basis of K is any defining set of
quasi-identities for Q(K).
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Graphs

A (directed) graph G = (G ,E ) is a set G endowed with a binary
relation E ⊆ G 2. A graph G is antireflexive if:

G |= ∀ xy E (x , x) −→ x = y .
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Quasivariety lattices

Let K be a quasivariety of algebraic structures. Let Lq(K) denote
the lattice of all quasivarieties contained in K (ordered by
inclusion).

The lattice of quasi-equational theories containing the theory of K
is dually isomorphic to Lq(K).

The Birkhoff-Malcev Problem: Which lattices are isomorphic to
lattices of subquasivarieties?
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Q-universality

A quasivariety K of a finite type is Q-universal if for any
quasivariety M of a finite type, Lq(M) is a homomorphic image of
a sublattice of Lq(K). (M.V. Sapir, 1985)

Quasivariety lattices of Q-universal quasivarieties are complex.
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Q-universality for graphs

Let C be the quasivariety of antireflexive graphs defined by the
following quasi-identities:

∀ xyz E (x , z) & E (y , z) −→ x = y ;

∀ xyz E (z , x) & E (z , y) −→ x = y .

Theorem (A. Kravchenko, 1997)

The quasivariety C is Q-universal.
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Directed cycles

C1 =
〈
{0}; {(0, 0)}

〉
- the trivial graph.

For an integer n > 1,

Cn =
〈
{0, . . . , n − 1};E

〉
denote the graph such that for any i , j < n,

(i , j) ∈ E if and only if j ≡ i + 1(mod n).

The graph Cn is called the directed cycle of length n.

Cn ∈ C for any n > 0.
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Unreasonability

Theorem (A. Nurakunov, 2012)

Let a σ contain a non-constant non-idempotent operation. Then
there is a quasivariety K of signature σ such that the set of all
finite sublattices of Lq(K) is not computable.

Remark. It means that there is no algorithm to decide whether a
given finite lattice embeds into such a quasivariety lattice.
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Unreasonability for graphs

Theorem

There is a class K ⊆ C such that the set of isomorphism types of
the class of finite sublattices of Lq(K) is computably enumerable
but not computable.

Theorem

There is a class K ⊆ C such that the set of isomorphism types of
the class of finite sublattices of Lq(K) is not computably
enumerable.

There are countably many of such classes in the first case, and
continuum many in the second one.
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Corollaries

Theorem

There are continuum many quasivarieties R of graphs such that
the finite membership problem for R and the quasi-equational
theory of R are undecidable.

A set Σ of quasi-identities such that K = Mod(Σ) is called a basis
of K.

There are continuum many quasivarieties of graphs which do not
have a computable basis of quasi-identities.
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Independent basis

A basis of K is independent if none of its proper subsets is a basis
of K.

Theorem

A quasivariety of graphs containing a finite number of cycles has
an independent basis of quasi-identities.

Theorem

There are uncountably many quasivarieties of graphs which have
no independent basis of quasi-identities.
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Differential groupoids

Similar results can be obtained for differential groupoids:

x · x = x

(x · y) · (z · t) = (x · z) · (y · t)

x · (x · y) = x .
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THANK YOU FOR YOUR ATTENTION.
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