On quasivarieties of graphs

Marina Schwidefsky¹ Anna Zamojska-Dzienio²

¹Institute of Mathematics of the Siberian Branch of Russian Academy of Sciences ²Faculty of Mathematics and Information Science, Warsaw University of Technology

AAA92, Prague

An algebraic structure is a nonempty set endowed with a set of operations and relations.

つくへ

An algebraic structure is a nonempty set endowed with a set of operations and relations.

Let σ be a signature and **K** be a class of algebraic structures of type σ .

A **quasi-identity** of σ is a formula

$$
\forall \overline{x} \ A_1(\overline{x}) \ \& \ \ldots \ \& \ A_n(\overline{x}) \ \longrightarrow \ A(\overline{x}),
$$

メミメ メミメ

 299

where $A_1(\overline{x}), \ldots, A_n(\overline{x}), A(\overline{x})$ are atomic formulas.

An algebraic structure is a nonempty set endowed with a set of operations and relations.

Let σ be a signature and **K** be a class of algebraic structures of type σ .

A **quasi-identity** of σ is a formula

$$
\forall \overline{x} \ A_1(\overline{x}) \ \& \ \ldots \ \& \ A_n(\overline{x}) \ \longrightarrow \ A(\overline{x}),
$$

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim}$

 299

where $A_1(\overline{x}), \ldots, A_n(\overline{x}), A(\overline{x})$ are atomic formulas.

A quasivariety is a class defined by quasi-identities.

A quasi-equational theory of K is the set of quasi-identities true in K.

 \sim \sim

つくへ

A quasi-equational theory of K is the set of quasi-identities true in K.

 $Q(K)$ the smallest quasivariety containing K , i.e. the class defined by the quasi-equational theory of K .

$$
\mathbf{Q}(\mathbf{K})=\mathbf{SPP}_{u}(\mathbf{K}).
$$

つくい

(all classes are abstract).

A quasi-equational theory of K is the set of quasi-identities true in K.

 $Q(K)$ the smallest quasivariety containing K , i.e. the class defined by the quasi-equational theory of K .

$$
\mathbf{Q}(\mathbf{K})=\mathbf{SPP}_{u}(\mathbf{K}).
$$

つくい

(all classes are abstract).

A quasi-equational basis of K is any defining set of quasi-identities for $Q(K)$.

A (directed) graph $G = (G, E)$ is a set G endowed with a binary relation $E \subseteq G^2$. A graph $\mathcal G$ is antireflexive if:

$$
\mathcal{G} \models \forall xy \ E(x,x) \longrightarrow x=y.
$$

 Ω

Let **K** be a quasivariety of algebraic structures. Let $Lq(K)$ denote the lattice of all quasivarieties contained in K (ordered by inclusion).

Let **K** be a quasivariety of algebraic structures. Let $Lq(K)$ denote the lattice of all quasivarieties contained in K (ordered by inclusion).

The lattice of quasi-equational theories containing the theory of K is dually isomorphic to $Lq(K)$.

つくへ

Let K be a quasivariety of algebraic structures. Let $Lq(K)$ denote the lattice of all quasivarieties contained in K (ordered by inclusion).

The lattice of quasi-equational theories containing the theory of K is dually isomorphic to $Lq(K)$.

The Birkhoff-Malcev Problem: Which lattices are isomorphic to lattices of subquasivarieties?

 Ω

A quasivariety K of a finite type is Q -universal if for any quasivariety M of a finite type, $Lq(M)$ is a homomorphic image of a sublattice of $Lq(K)$. (M.V. Sapir, 1985)

A quasivariety **K** of a finite type is Q -**universal** if for any quasivariety M of a finite type, $Lq(M)$ is a homomorphic image of a sublattice of $Lq(K)$. (M.V. Sapir, 1985)

つくい

Quasivariety lattices of Q-universal quasivarieties are complex.

Let C be the quasivariety of antireflexive graphs defined by the following quasi-identities:

$$
\forall xyz \ E(x, z) \& E(y, z) \longrightarrow x = y;
$$

$$
\forall xyz \ E(z, x) \& E(z, y) \longrightarrow x = y.
$$

つくい

Theorem (A. Kravchenko, 1997)

The quasivariety C is Q-universal.

 $\mathfrak{C}_1 = \big\langle \{0\}; \{(0,0)\} \big\rangle$ - the trivial graph.

For an integer $n > 1$,

$$
\mathcal{C}_n=\big\langle\{0,\ldots,n-1\};E\big\rangle
$$

denote the graph such that for any $i, j < n$,

$$
(i, j) \in E
$$
 if and only if $j \equiv i + 1 \pmod{n}$.

つくい

The graph \mathcal{C}_n is called the **directed cycle of length** n.

$$
\mathcal{C}_n \in \mathbf{C} \text{ for any } n > 0.
$$

Theorem (A. Nurakunov, 2012)

Let a σ contain a non-constant non-idempotent operation. Then there is a quasivariety **K** of signature σ such that the set of all finite sublattices of $Lq(K)$ is not computable.

つくへ

Theorem (A. Nurakunov, 2012)

Let a σ contain a non-constant non-idempotent operation. Then there is a quasivariety **K** of signature σ such that the set of all finite sublattices of $Lq(K)$ is not computable.

Remark. It means that there is no algorithm to decide whether a given finite lattice embeds into such a quasivariety lattice.

There is a class $K \subseteq C$ such that the set of isomorphism types of the class of finite sublattices of $Lq(K)$ is computably enumerable but not computable.

There is a class $K \subseteq C$ such that the set of isomorphism types of the class of finite sublattices of $Lq(K)$ is computably enumerable but not computable.

Theorem

There is a class $K \subseteq C$ such that the set of isomorphism types of the class of finite sublattices of $Lq(K)$ is not computably enumerable.

 Ω

There is a class $K \subseteq C$ such that the set of isomorphism types of the class of finite sublattices of $Lq(K)$ is computably enumerable but not computable.

Theorem

There is a class $K \subseteq C$ such that the set of isomorphism types of the class of finite sublattices of $Lq(K)$ is not computably enumerable.

There are countably many of such classes in the first case, and continuum many in the second one.

There are continuum many quasivarieties R of graphs such that the finite membership problem for R and the quasi-equational theory of R are undecidable.

 299

There are continuum many quasivarieties $\bf R$ of graphs such that the finite membership problem for R and the quasi-equational theory of $\bf R$ are undecidable.

A set Σ of quasi-identities such that $K = Mod(\Sigma)$ is called a **basis** of K.

There are continuum many quasivarieties \bf{R} of graphs such that the finite membership problem for $\bf R$ and the quasi-equational theory of $\bf R$ are undecidable.

A set Σ of quasi-identities such that $\mathbf{K} = Mod(\Sigma)$ is called a **basis** of K.

There are continuum many quasivarieties of graphs which do not have a computable basis of quasi-identities.

A basis of K is independent if none of its proper subsets is a basis of K.

つくへ

 \sim

A basis of K is independent if none of its proper subsets is a basis of K.

Theorem

A quasivariety of graphs containing a finite number of cycles has an independent basis of quasi-identities.

A basis of K is independent if none of its proper subsets is a basis of K.

Theorem

A quasivariety of graphs containing a finite number of cycles has an independent basis of quasi-identities.

Theorem

There are uncountably many quasivarieties of graphs which have no independent basis of quasi-identities.

Similar results can be obtained for differential groupoids:

$$
x \cdot x = x
$$

(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t)
x \cdot (x \cdot y) = x.

 \sim \sim

 Ω

THANK YOU FOR YOUR ATTENTION.

B

→ (母) → (目) → (目) →

4 0 8

 299

Schwidefsky, Zamojska-Dzienio [Graphs](#page-0-0)