On the poset of minors of a function

Tamás Waldhauser joint work with Erkko Lehtonen

University of Szeged

92nd Arbeitstagung Allgemeine Algebra Prague, 29 May 2016

Definition Function of *n* variables:

 $f: A^n \to B.$

The set of all such functions is denoted by \mathcal{F}_{AB} .

Definition Function of *n* variables:

 $f: A^n \to B.$

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

 A = B = {0, 1}: Boolean functions (logic, discrete mathematics, computer science)

Definition Function of *n* variables:

 $f: A^n \to B.$

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

- A = B = {0,1}: Boolean functions (logic, discrete mathematics, computer science)
- A = {0,1}, B = ℝ: pseudo-Boolean functions or set functions (game theory, operations research)

Definition Function of *n* variables:

 $f: A^n \to B.$

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

- A = B = {0,1}: Boolean functions (logic, discrete mathematics, computer science)
- A = {0,1}, B = ℝ: pseudo-Boolean functions or set functions (game theory, operations research)
- A = B: operations (algebra)

Definition

ł

The function g is a minor of f (notation: $g \le f$) if g can be obtained from f by substituting variables to variables:

$$g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).$$

Definition

The function g is a minor of f (notation: $g \le f$) if g can be obtained from f by substituting variables to variables:

$$g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).$$

If $g \leq f$ and $f \leq g$, then f and g are equivalent (notation: $f \equiv g$).

Definition

The function g is a minor of f (notation: $g \le f$) if g can be obtained from f by substituting variables to variables:

$$g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).$$

If $g \leq f$ and $f \leq g$, then f and g are equivalent (notation: $f \equiv g$).

Examples

g (x, y, z) = f (y, x, z) permutation of variables
g (x, y, z) = f (x, y) introduction of inessential variables
g (x, y) = f (x, y, y) identification of variables

Definition

The function g is a minor of f (notation: $g \le f$) if g can be obtained from f by substituting variables to variables:

$$g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).$$

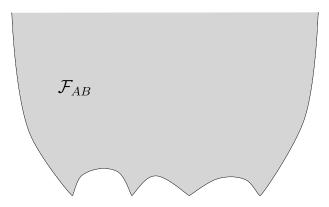
If $g \leq f$ and $f \leq g$, then f and g are equivalent (notation: $f \equiv g$).

Examples

g (x, y, z) = f (y, x, z) permutation of variables
 g (x, y, z) = f (x, y) introduction of inessential variables
 g (x, y) = f (x, y, y) identification of variables

Our main object of study is the poset $(\mathcal{F}_{AB} / \equiv; \leq)$.

Minor posets



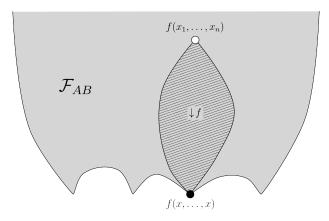
Minor posets

Definition

A poset P is a minor poset if there is a function $f \in \mathcal{F}_{AB}$ (for some sets A and B) such that P is isomorphic to the poset of minors of f, i.e.,

$$P \cong \downarrow f := (\{g \in \mathcal{F}_{AB} \mid g \leq f\} / \equiv; \leq).$$

~ `



When forming a minor of $f(x_1, ..., x_n)$, it is sufficient to tell which variables are being identified with each other. This can be given by a partition of $\{1, ..., n\}$.

The set of all partitions of $\{1, ..., n\}$ forms the partition lattice Π_n . For $\alpha \in \Pi_n$, let f_{α} denote the corresponding minor of f.

When forming a minor of $f(x_1, ..., x_n)$, it is sufficient to tell which variables are being identified with each other. This can be given by a partition of $\{1, ..., n\}$.

The set of all partitions of $\{1, ..., n\}$ forms the partition lattice Π_n . For $\alpha \in \Pi_n$, let f_{α} denote the corresponding minor of f.

Example

Let f be the Boolean function given by the following polynomial over \mathbb{Z}_2 :

$$f(x_1, x_2, x_3, x_4) = x_1 x_3 + x_2 + x_4.$$

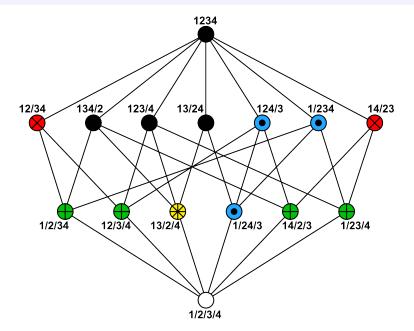
For $\alpha = 1 \mid 24 \mid 3$ we obtain the minor

$$f_{\alpha}(x, y, z) = f(x, y, z, y) = xz + y + y = xz.$$

Let $f(x_1, x_2, x_3, x_4) = x_1x_3 + x_2 + x_4$.				
• $\alpha = 1 \mid 2 \mid 3 \mid 4$	$f_{\alpha}(x,y,z,u)$	= f(x, y, z, u) = xz + y + u		
	$f_{\alpha}(x,y,z)$	= f(x, x, y, z) = xy + x + z		
• $\alpha = 13 \mid 2 \mid 4$	$f_{\alpha}(x, y, z)$	= f(x, y, x, z) = x + y + z		
	$f_{\alpha}(x, y, z)$	= f(x, y, z, x) = xz + y + x		
	$f_{\alpha}(x, y, z)$	= f(x, y, y, z) = xy + y + z		
	$f_{\alpha}(x, y, z)$	= f(x, y, z, y) = xz		
	$f_{\alpha}(x, y, z)$	= f(x, y, z, z) = xz + y + z		
	$f_{\alpha}(x,y)$	$=f\left(x,x,x,y\right)=y$		
	$f_{\alpha}(x,y)$	= f(x, x, y, x) = xy		
	$f_{\alpha}(x,y)$	= f(x, y, x, x) = y		
	$f_{\alpha}(x,y)$	= f(x, y, y, y) = xy		
	$f_{\alpha}(x,y)$	= f(x, x, y, y) = xy + x + y		
	$f_{\alpha}(x,y)$	= f(x, y, x, y) = x		
 α = 14 23 	$f_{\alpha}(x,y)$	= f(x, y, y, x) = xy + y + x		
▶ α = 1234	$f_{\alpha}(x)$	= f(x, x, x, x) = x		

Let $f(x_1, x_2, x_3, x_4) = x_1x_3 + x_2 + x_4$.					
• $\alpha = 1 \mid 2 \mid 3 \mid 4$	$f_{\alpha}(x,y,z,u)$)=f(x,y,z,u)=xz+y+u	\mapsto \bigcirc		
• $\alpha = 12 3 4$	$f_{\alpha}(x,y,z)$	= f(x, x, y, z) = xy + x + z	\mapsto \bigoplus		
	$f_{\alpha}(x,y,z)$	= f(x, y, x, z) = x + y + z	\mapsto \circledast		
• $\alpha = 14 \mid 2 \mid 3$	$f_{\alpha}(x, y, z)$	= f(x, y, z, x) = xz + y + x	\mapsto \bigoplus		
	$f_{\alpha}(x, y, z)$	= f(x, y, y, z) = xy + y + z	\mapsto \bigoplus		
	$f_{\alpha}(x,y,z)$	= f(x, y, z, y) = xz	\mapsto \bullet		
	$f_{\alpha}(x,y,z)$	= f(x, y, z, z) = xz + y + z	\mapsto \bigoplus		
	$f_{\alpha}(x,y)$	$=f\left(x,x,x,y\right)=y$	\mapsto \bullet		
	$f_{\alpha}(x,y)$	= f(x, x, y, x) = xy	\mapsto \bullet		
	$f_{\alpha}(x,y)$	= f(x, y, x, x) = y	\mapsto $igodot$		
	$f_{\alpha}(x,y)$	= f(x, y, y, y) = xy	\mapsto \bullet		
	$f_{\alpha}(x,y)$	= f(x, x, y, y) = xy + x + y	\mapsto 🚫		
	$f_{\alpha}(x,y)$	= f(x, y, x, y) = x	\mapsto \bullet		
	$f_{\alpha}(x,y)$	= f(x, y, y, x) = xy + y + x	\mapsto 🚫		
▶ α = 1234	$f_{\alpha}\left(x ight)$	=f(x,x,x,x)=x	$\mapsto ullet$		

Colored partition lattice



Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$c: \Pi_n \to \downarrow f, \ \alpha \mapsto f_{\alpha} / \equiv .$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f:

 $\Pi_n/\ker c \cong (\downarrow f)^d$.

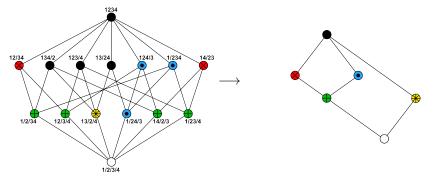
Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$c: \Pi_n \to \downarrow f, \ \alpha \mapsto f_\alpha / \equiv .$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f:

 $\Pi_n/\ker c \cong (\downarrow f)^d$.



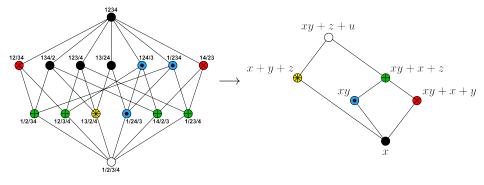
Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$c: \Pi_n \to \downarrow f, \ \alpha \mapsto f_\alpha / \equiv d$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f:

 $\Pi_n/\ker c \cong (\downarrow f)^d$.



Problem Which finite bounded posets are minor posets?

Problem solved!

Since the minor poset of f is determined by the "minor coloring", it suffices to describe these colorings.

Theorem

For every coloring $c \colon \Pi_n \to C$, the following two conditions are equivalent.

(i) There is a function
$$f: A^n \to B$$
 such that

$$\forall \alpha, \beta \in \Pi_n: \ c(\alpha) = c(\beta) \iff f_{\alpha} \equiv f_{\beta}.$$

(ii) ... (Very Technical Condition) ...

Problem solved!

Since the minor poset of f is determined by the "minor coloring", it suffices to describe these colorings.

Theorem

For every coloring $c \colon \Pi_n \to C$, the following two conditions are equivalent.

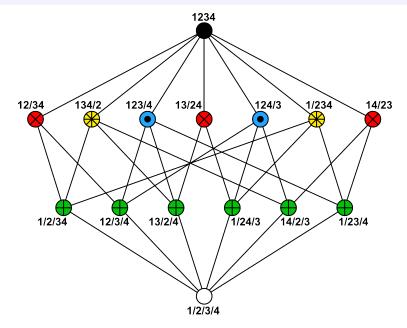
(i) There is a function
$$f: A^n \to B$$
 such that

$$\forall \alpha, \beta \in \Pi_n: \ c(\alpha) = c(\beta) \iff f_\alpha \equiv f_\beta.$$

(ii) For all α, β ∈ Π_n, if c (α) = c (β), then there exist α₀,..., α_k, β₀,..., β_ℓ ∈ Π_n (for some k, ℓ ∈ N₀), such that α₀ = α, β₀ = β, and

- (a) $[\alpha_k; \top]$ and $[\beta_\ell; \top]$ are isomorphic as colored posets;
- (b) $\forall i \in \{0, \dots, k-1\}$: $\alpha_i \prec \alpha_{i+1}$ and $\exists \eta_i \in \Pi_n \text{ s.t. } \alpha_i \leq \eta_i \prec \top, \ \alpha_{i+1} \nleq \eta_i$, and $\forall \gamma \in \Pi_n$: $\alpha_i \prec \gamma \nleq \eta_i \implies \forall \xi \in [\alpha_i; \eta_i] : c(\xi) = c(\xi \lor \gamma);$
- (c) $\forall j \in \{0, \dots, \ell-1\}$: $\beta_j \prec \beta_{j+1}$ and $\exists \vartheta_j \in \Pi_n \text{ s.t. } \beta_j \leq \vartheta_j \prec \top, \ \beta_{j+1} \nleq \vartheta_j,$ and $\forall \gamma \in \Pi_n$: $\beta_j \prec \gamma \nleq \vartheta_j \implies \forall \xi \in [\beta_j; \vartheta_j] : c(\xi) = c(\xi \lor \gamma).$

Instead of VTC: What is wrong with this coloring?



Problem solved?

Despite the characterization of "minor colorings", it is still not easy tell whether a given poset is a minor poset or not. Some partial results:

Theorem

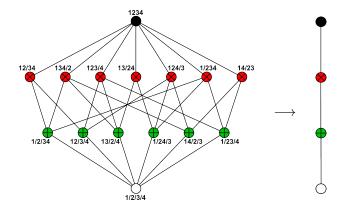
All bounded posets with at most 6 elements are minor posets.

Theorem

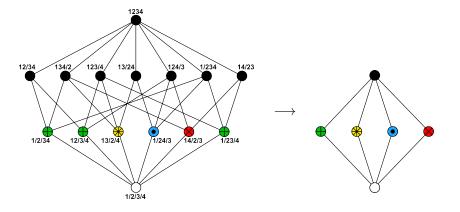
For every $n \in \mathbb{N}$, the following posets are minor posets:

- the chain of length n;
- ► the lattice M_n;
- ▶ the n-dimensional cube **2**ⁿ.

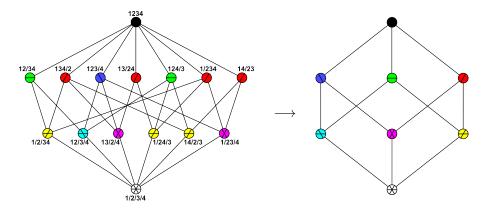
Proof: the chain



Proof: M_n



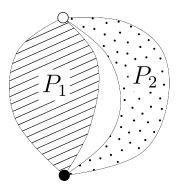
Proof: the cube

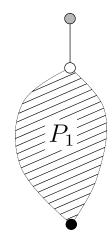


Constructions

Theorem

If P_1 and P_2 are minor posets, then so are the following:





After all, is there a finite bounded poset that is not a minor poset?