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Functions

Definition
Function of n variables:

f : An → B.

The set of all such functions is denoted by FAB .

Special cases:

I A = B = {0, 1}: Boolean functions
(logic, discrete mathematics, computer science)

I A = {0, 1} , B = R: pseudo-Boolean functions or set functions
(game theory, operations research)

I A = B: operations
(algebra)
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Minors

Definition
The function g is a minor of f (notation: g ≤ f ) if g can be obtained from f by
substituting variables to variables:

g ≤ f ⇐⇒ ∃i1, . . . , in ∈ {1, . . . , k} : g (x1, . . . , xk ) = f
(
xi1 , . . . , xin

)
.

If g ≤ f and f ≤ g , then f and g are equivalent (notation: f ≡ g).

Examples

I g (x , y , z) = f (y , x , z) permutation of variables

I g (x , y , z) = f (x , y) introduction of inessential variables

I g (x , y) = f (x , y , y) identification of variables

Our main object of study is the poset (FAB/≡;≤).
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Minor posets

Definition
A poset P is a minor poset if there is a function f ∈ FAB (for some sets A and B)
such that P is isomorphic to the poset of minors of f , i.e.,

P ∼= ↓ f := ({g ∈ FAB | g ≤ f }/≡;≤) .



Partitions and minors

When forming a minor of f (x1, . . . , xn), it is sufficient to tell which variables are
being identified with each other. This can be given by a partition of {1, . . . , n}.

The set of all partitions of {1, . . . , n} forms the partition lattice Πn.
For α ∈ Πn, let fα denote the corresponding minor of f .

Example
Let f be the Boolean function given by the following polynomial over Z2:

f (x1, x2, x3, x4) = x1x3 + x2 + x4.

For α = 1 | 24 | 3 we obtain the minor

fα (x , y , z) = f (x , y , z , y) = xz + y + y = xz .
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Partitions and minors

Let f (x1, x2, x3, x4) = x1x3 + x2 + x4.

I α = 1 | 2 | 3 | 4 fα (x , y , z , u) = f (x , y , z , u) = xz + y + u

I α = 12 | 3 | 4 fα (x , y , z) = f (x , x , y , z) = xy + x + z

I α = 13 | 2 | 4 fα (x , y , z) = f (x , y , x , z) = x + y + z

I α = 14 | 2 | 3 fα (x , y , z) = f (x , y , z , x) = xz + y + x

I α = 1 | 23 | 4 fα (x , y , z) = f (x , y , y , z) = xy + y + z

I α = 1 | 24 | 3 fα (x , y , z) = f (x , y , z , y) = xz

I α = 1 | 2 | 34 fα (x , y , z) = f (x , y , z , z) = xz + y + z

I α = 123 | 4 fα (x , y) = f (x , x , x , y) = y

I α = 124 | 3 fα (x , y) = f (x , x , y , x) = xy

I α = 134 | 2 fα (x , y) = f (x , y , x , x) = y

I α = 1 | 234 fα (x , y) = f (x , y , y , y) = xy

I α = 12 | 34 fα (x , y) = f (x , x , y , y) = xy + x + y

I α = 13 | 24 fα (x , y) = f (x , y , x , y) = x

I α = 14 | 23 fα (x , y) = f (x , y , y , x) = xy + y + x

I α = 1234 fα (x) = f (x , x , x , x) = x



Partitions and minors

Let f (x1, x2, x3, x4) = x1x3 + x2 + x4.

I α = 1 | 2 | 3 | 4 fα (x , y , z , u) = f (x , y , z , u) = xz + y + u 7→
I α = 12 | 3 | 4 fα (x , y , z) = f (x , x , y , z) = xy + x + z 7→
I α = 13 | 2 | 4 fα (x , y , z) = f (x , y , x , z) = x + y + z 7→
I α = 14 | 2 | 3 fα (x , y , z) = f (x , y , z , x) = xz + y + x 7→
I α = 1 | 23 | 4 fα (x , y , z) = f (x , y , y , z) = xy + y + z 7→
I α = 1 | 24 | 3 fα (x , y , z) = f (x , y , z , y) = xz 7→
I α = 1 | 2 | 34 fα (x , y , z) = f (x , y , z , z) = xz + y + z 7→
I α = 123 | 4 fα (x , y) = f (x , x , x , y) = y 7→
I α = 124 | 3 fα (x , y) = f (x , x , y , x) = xy 7→
I α = 134 | 2 fα (x , y) = f (x , y , x , x) = y 7→
I α = 1 | 234 fα (x , y) = f (x , y , y , y) = xy 7→
I α = 12 | 34 fα (x , y) = f (x , x , y , y) = xy + x + y 7→
I α = 13 | 24 fα (x , y) = f (x , y , x , y) = x 7→
I α = 14 | 23 fα (x , y) = f (x , y , y , x) = xy + y + x 7→
I α = 1234 fα (x) = f (x , x , x , x) = x 7→



Colored partition lattice



Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

c : Πn → ↓ f , α 7→ fα/≡ .

The resulting quotient poset is isomorphic to the dual of the minor poset of f :

Πn/ker c ∼= (↓ f )d .

−→
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The main problem

Problem
Which finite bounded posets are minor posets?



Problem solved!

Since the minor poset of f is determined by the “minor coloring”, it suffices to
describe these colorings.

Theorem
For every coloring c : Πn → C , the following two conditions are equivalent.

(i) There is a function f : An → B such that

∀α, β ∈ Πn : c (α) = c (β) ⇐⇒ fα ≡ fβ.

(ii) . . . (Very Technical Condition) . . .
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Since the minor poset of f is determined by the “minor coloring”, it suffices to
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Theorem
For every coloring c : Πn → C , the following two conditions are equivalent.

(i) There is a function f : An → B such that

∀α, β ∈ Πn : c (α) = c (β) ⇐⇒ fα ≡ fβ.

(ii) For all α, β ∈ Πn, if c (α)=c (β), then there exist α0, . . . , αk , β0, . . . , β` ∈ Πn

(for some k, ` ∈N0), such that α0 = α, β0 = β, and

(a) [αk ;>] and [β`;>] are isomorphic as colored posets;

(b) ∀i ∈ {0, . . . , k − 1} : αi ≺ αi+1 and ∃ηi ∈ Πn s.t. αi ≤ ηi ≺ >, αi+1 � ηi ,
and ∀γ ∈ Πn : αi ≺ γ � ηi =⇒ ∀ξ ∈ [αi ; ηi ] : c (ξ) = c (ξ ∨ γ);

(c) ∀j ∈ {0, . . . , `− 1} : βj ≺ βj+1 and ∃ϑj ∈ Πn s.t. βj ≤ ϑj ≺ >, βj+1 � ϑj ,
and ∀γ ∈ Πn : βj ≺ γ � ϑj =⇒ ∀ξ ∈

[
βj ; ϑj

]
: c (ξ) = c (ξ ∨ γ).



Instead of VTC: What is wrong with this coloring?



Problem solved?

Despite the characterization of “minor colorings”, it is still not easy tell whether a
given poset is a minor poset or not. Some partial results:

Theorem
All bounded posets with at most 6 elements are minor posets.

Theorem
For every n ∈N, the following posets are minor posets:

I the chain of length n;

I the lattice Mn;

I the n-dimensional cube 2n.



Proof: the chain

−→



Proof: Mn

−→



Proof: the cube

−→



Constructions

Theorem
If P1 and P2 are minor posets, then so are the following:



Last slide, last question

After all, is there a finite bounded poset that is not a minor poset?


