On the poset of minors of a function

Tamás Waldhauser joint work with Erkko Lehtonen

University of Szeged

92nd Arbeitstagung Allgemeine Algebra Prague, 29 May 2016

Definition Function of n variables:

 $f: A^n \to B$.

The set of all such functions is denoted by \mathcal{F}_{AB} .

Definition Function of n variables:

 $f: A^n \to B$.

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

 $A = B = \{0, 1\}$: Boolean functions (logic, discrete mathematics, computer science)

Definition Function of n variables:

 $f: A^n \to B$.

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

- $A = B = \{0, 1\}$: Boolean functions (logic, discrete mathematics, computer science)
- $A = \{0, 1\}$, $B = \mathbb{R}$: pseudo-Boolean functions or set functions (game theory, operations research)

Definition Function of n variables:

 $f: A^n \to B$.

The set of all such functions is denoted by \mathcal{F}_{AB} .

Special cases:

- $A = B = \{0, 1\}$: Boolean functions (logic, discrete mathematics, computer science)
- $A = \{0, 1\}$, $B = \mathbb{R}$: pseudo-Boolean functions or set functions (game theory, operations research)
- $A = B$: operations (algebra)

Definition

The function g is a minor of f (notation: $g \leq f$) if g can be obtained from f by substituting variables to variables:

$$
g\leq f \iff \exists i_1,\ldots,i_n\in\{1,\ldots,k\} : g(x_1,\ldots,x_k)=f(x_{i_1},\ldots,x_{i_n}).
$$

Definition

The function g is a minor of f (notation: $g \leq f$) if g can be obtained from f by substituting variables to variables:

$$
g\leq f \iff \exists i_1,\ldots,i_n\in\{1,\ldots,k\} : g(x_1,\ldots,x_k)=f(x_{i_1},\ldots,x_{i_n}).
$$

If $g \le f$ and $f \le g$, then f and g are equivalent (notation: $f \equiv g$).

Definition

The function g is a minor of f (notation: $g \leq f$) if g can be obtained from f by substituting variables to variables:

$$
g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).
$$

If $g \leq f$ and $f \leq g$, then f and g are equivalent (notation: $f \equiv g$).

Examples

 $g(x, y, z) = f(y, x, z)$ permutation of variables $g(x, y, z) = f(x, y)$ introduction of inessential variables \blacktriangleright $g(x, y) = f(x, y, y)$ identification of variables

Definition

The function g is a minor of f (notation: $g \leq f$) if g can be obtained from f by substituting variables to variables:

$$
g \leq f \iff \exists i_1, \ldots, i_n \in \{1, \ldots, k\} : g(x_1, \ldots, x_k) = f(x_{i_1}, \ldots, x_{i_n}).
$$

If $g \leq f$ and $f \leq g$, then f and g are equivalent (notation: $f \equiv g$).

Examples

 $g(x, y, z) = f(y, x, z)$ permutation of variables $g(x, y, z) = f(x, y)$ introduction of inessential variables \bullet $g(x, y) = f(x, y, y)$ identification of variables

Our main object of study is the poset $(\mathcal{F}_{AB}/\equiv;\leq)$.

Minor posets

Minor posets

Definition

A poset P is a minor poset if there is a function $f \in \mathcal{F}_{AB}$ (for some sets A and B) such that P is isomorphic to the poset of minors of f , i.e.,

$$
P \cong \bigcup f := \left(\{ g \in \mathcal{F}_{AB} \mid g \leq f \} / \equiv ; \leq \right).
$$

When forming a minor of $f(x_1, \ldots, x_n)$, it is sufficient to tell which variables are being identified with each other. This can be given by a partition of $\{1, \ldots, n\}$.

The set of all partitions of $\{1, \ldots, n\}$ forms the partition lattice Π_n . For $\alpha \in \Pi_n$, let f_α denote the corresponding minor of f.

When forming a minor of $f(x_1, \ldots, x_n)$, it is sufficient to tell which variables are being identified with each other. This can be given by a partition of $\{1, \ldots, n\}$.

The set of all partitions of $\{1, \ldots, n\}$ forms the partition lattice Π_n . For $\alpha \in \Pi_n$, let f_α denote the corresponding minor of f.

Example

Let f be the Boolean function given by the following polynomial over \mathbb{Z}_2 :

$$
f(x_1, x_2, x_3, x_4) = x_1x_3 + x_2 + x_4.
$$

For $\alpha = 1 \mid 24 \mid 3$ we obtain the minor

$$
f_{\alpha}(x, y, z) = f(x, y, z, y) = xz + y + y = xz.
$$

Colored partition lattice

Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$
c\colon \Pi_n\to \downarrow f,\ \alpha\mapsto f_\alpha/\equiv.
$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f :

 $\Pi_n/\text{ker } c \cong (\downarrow \! f)^d$.

Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$
c\colon \Pi_n\to \downarrow f,\ \alpha\mapsto f_\alpha/\equiv.
$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f :

 $\Pi_n/\text{ker } c \cong (\downarrow \! f)^d$.

Minor poset from colored partition lattice

Let us color the partition lattice by the minors of f (up to equivalence):

$$
c\colon \Pi_n\to \downarrow f,\ \alpha\mapsto f_\alpha/\equiv.
$$

The resulting quotient poset is isomorphic to the dual of the minor poset of f :

 $\Pi_n/\text{ker } c \cong (\downarrow \! f)^d$.

Problem Which finite bounded posets are minor posets?

Problem solved!

Since the minor poset of f is determined by the "minor coloring", it suffices to describe these colorings.

Theorem

For every coloring $c: \Pi_n \to C$, the following two conditions are equivalent.

(i) There is a function $f: A^n \to B$ such that

 $\forall \alpha, \beta \in \Pi_n$: $c(\alpha) = c(\beta) \iff f_\alpha \equiv f_\beta$.

(ii) \ldots (Very Technical Condition) ...

Problem solved!

Since the minor poset of f is determined by the "minor coloring", it suffices to describe these colorings.

Theorem

For every coloring $c: \Pi_n \to C$, the following two conditions are equivalent.

(i) There is a function
$$
f: A^n \rightarrow B
$$
 such that

$$
\forall \alpha, \beta \in \Pi_n: \ c(\alpha) = c(\beta) \iff f_\alpha \equiv f_\beta.
$$

(ii) For all $\alpha, \beta \in \Pi_n$, if $c(\alpha) = c(\beta)$, then there exist $\alpha_0, \ldots, \alpha_k, \beta_0, \ldots, \beta_\ell \in \Pi_n$ (for some $k, \ell \in \mathbb{N}_0$), such that $\alpha_0 = \alpha$, $\beta_0 = \beta$, and $\left(\mathsf{a}\right)$ $\left[\alpha_k;\top\right]$ and $\left[\beta_\ell;\top\right]$ are isomorphic as colored posets;

(b) $\forall i \in \{0, \ldots, k-1\} : \alpha_i \prec \alpha_{i+1} \text{ and } \exists \eta_i \in \Pi_n \text{ s.t. } \alpha_i \leq \eta_i \prec \top, \alpha_{i+1} \nleq \eta_i,$ $\forall \gamma \in \Pi_n: \ \alpha_i \prec \gamma \nleq \eta_i \implies \forall \xi \in [\alpha_i; \eta_i]: c(\xi) = c(\xi \vee \gamma);$

(c)
$$
\forall j \in \{0, ..., \ell-1\} : \beta_j \prec \beta_{j+1} \text{ and } \exists \theta_j \in \Pi_n \text{ s.t. } \beta_j \leq \theta_j \prec \top, \ \beta_{j+1} \nleq \theta_j, \text{ and } \forall \gamma \in \Pi_n : \beta_j \prec \gamma \nleq \theta_j \implies \forall \xi \in [\beta_j; \theta_j] : c(\xi) = c(\xi \vee \gamma).
$$

Instead of VTC: What is wrong with this coloring?

Problem solved?

Despite the characterization of "minor colorings", it is still not easy tell whether a given poset is a minor poset or not. Some partial results:

Theorem

All bounded posets with at most 6 elements are minor posets.

Theorem

For every $n \in \mathbb{N}$, the following posets are minor posets:

- \blacktriangleright the chain of length n;
- \blacktriangleright the lattice M_n ;
- ighthermonomorphic the n-dimensional cube 2^n .

Proof: the chain

Proof: M_n

Proof: the cube

Constructions

Theorem

If P_1 and P_2 are minor posets, then so are the following:

After all, is there a finite bounded poset that is not a minor poset?