Code loops in dimension up to 8

E.A. O'Brien and Petr Vojtěchovský

Arbeitstagung Allgemeine Algebra Czech University of Life Sciences May 29, 2016

1 [Introduction](#page-3-0) [History](#page-4-0) [Code loops](#page-17-0) [Combinatorial polarization](#page-21-0) [Symplectic Moufang](#page-22-0) 2-loops [Results of Hsu](#page-24-0)

1 [Introduction](#page-3-0) **[History](#page-4-0)** [Code loops](#page-17-0) [Combinatorial polarization](#page-21-0) [Symplectic Moufang](#page-22-0) 2-loops [Results of Hsu](#page-24-0)

2 [Enumeration](#page-25-0) [Trilinear alternating forms](#page-26-0) [Stratified action of](#page-32-0) $GL(V)$ [Code loops](#page-37-0)

1 [Introduction](#page-3-0) **[History](#page-4-0)** [Code loops](#page-17-0) [Combinatorial polarization](#page-21-0) [Symplectic Moufang](#page-22-0) 2-loops [Results of Hsu](#page-24-0)

2 [Enumeration](#page-25-0) [Trilinear alternating forms](#page-26-0) [Stratified action of](#page-32-0) $GL(V)$ [Code loops](#page-37-0)

The construction of the Monster simple group is based on the binary Golay code, the Leech lattice, and a remarkable nonassociative loop discovered by R.A. Parker.

- - J.H. Conway in "The Monster Group and its 196884-dimensional space"

1984 The Monster group is discovered by Griess

1984 The Monster group is discovered by Griess

1985 Conway publishes a simplified construction

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps
- 2010 Drápal and V describe code loops in both parities combinatorially

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name **code loop**
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local p -subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps
- 2010 Drápal and V describe code loops in both parities combinatorially
- 2015 Hora and Pudlák classify trilinear alternating forms over \mathbb{F}_2 in dimension 8

Vojtěchovský (University of Denver) [Code loops in dimension up to 8](#page-0-0) AAA '92 5 / 24

Doubly even codes

For a vector v in \mathbb{F}_2^n let $|v|$ be the **Hamming weight** of v , the number of nonzero coordinates of v.

Let $u \cap v$ be the vector such that $(u \cap v)_i = \min\{u_i, v_i\}.$

Definition

A binary code V is **doubly even** if $|v|$ is a multiple of 4 for every $v \in V$.

If V is doubly even then $|u \cap v|/2$ is an integer for every u, $v \in V$.

Loops and Moufang loops

Definition

A loop is a groupoid (Q, \cdot) with identity element 1 such that the translations $L_x : y \mapsto xy$, $R_x : y \mapsto yx$ are bijections of Q.

Definition

A loop is **Moufang** if it satisfies the identity $x(y(xz)) = ((xy)x)z$.

Factor sets for doubly even codes

Let V be a doubly even code. A mapping $\theta : V \times V \to \mathbb{F}_2$ is a factor set if

- $\theta(u, u) \equiv |u|/4$,
- $\theta(u, v) + \theta(v, u) \equiv |u \cap v|/2$,
- $\theta(u, v) + \theta(u + v, w) + \theta(v, w) + \theta(u, v + w) \equiv |u \cap v \cap w|$.

Theorem (Griess)

Every doubly even code V admits a factor set, uniquely determined up to a coboundary.

Griess' code loops

Definition

Let V be a doubly even code and $\theta : V \times V \to \mathbb{F}_2$ its factor set. Define $\mathcal{Q}(V, \theta)$ on $\mathbb{F}_2 \times V$ by

 $(a, u)(b, v) = (a + b + \theta(u, v), uv).$

Theorem (Griess)

The loop $\mathcal{Q}(V, \theta)$ is always Moufang and its isomorphism type does not depend on the choice of the factor set θ . It is the **code loop** of V.

Combinatorial polarization

Let $f: V \to F$ be mapping such that $f(0) = 0$. The *m*-th derived form $f_m: V^m \to F$ is defined by

$$
f_m(u_1,\ldots,u_m)=\sum_{I\subseteq\{1,\ldots,m\}}(-1)^{m-|I|}f(\sum_{i\in I}u_i).
$$

Notes:

- $f_2(u_1, u_2) = f(u_1 + u_2) f(u_1) f(u_2)$
- every f_m is symmetric
- $f_{m+1} = 0$ if and only if f_m is *m*-additive.
- over \mathbb{F}_2 , every f_m is alternating (vanishes when argument is repeated)

Symplectic 2-loops and the squaring map

Definition

A 2-loop Q is symplectic if it contains a central subloop F of order 2 such that $Q/F = V$ is an elementary abelian 2-group.

In a symplectic 2-loop $\mathcal{Q}(\mathcal{V},\theta)$, the **squaring map** $P: x \mapsto x^2$ can be viewed as a map $V \rightarrow F$ since $(a, u)(a, u) = (\theta(u, u), 0)$.

Symplectic Moufang 2-loops

Theorem (Aschbacher)

Let V be a vector space over \mathbb{F}_2 . Then:

- A symplectic 2-loop over V is Moufang if and only if P_2 is the commutator map, P_3 is the associator map and $P_4 = 0$.
- Given a map $f: V \to F$ such that $f_4 = 0$, there is a symplectic Moufang 2-loop with $P = f$.
- Two 2-symplectic Moufang loops over V are isomorphic if and only if their squaring maps are conjugate in $GL(V)$.

Results of Hsu

A Moufang p -loop Q is **small Frattini** if it possesses a normal subloop F of order dividing p such that Q/F is an elementary abelian p-group.

Theorem (Hsu)

- In a small Frattini Moufang loop the subloop F is central.
- Nonassociative small Frattini Moufang loops exist iff $p \leq 3$.
- Small Frattini Moufang 2-loops $=$ code loops $=$ symplectic Moufang 2-loops.

1 [Introduction](#page-3-0) [History](#page-4-0)

[Code loops](#page-17-0) [Combinatorial polarization](#page-21-0) [Symplectic Moufang](#page-22-0) 2-loops [Results of Hsu](#page-24-0)

2 [Enumeration](#page-25-0) [Trilinear alternating forms](#page-26-0) [Stratified action of](#page-32-0) $GL(V)$ [Code loops](#page-37-0)

Trilinear alternating forms

Two trilinear alternating forms $f,\,g:V^3\rightarrow F$ are ${\bf equivalent}$ if there is $\varphi \in GL(V)$ such that $f(\varphi(u), \varphi(v), \varphi(w)) = g(u, v, w)$.

Theorem (Cohen and Helminck 1988)

Classified trilinear alternating forms over \mathbb{F}_2 in dimension ≤ 7 .

Theorem (Hora and Pudlák 2015)

There are 32 trilinear alternating forms over \mathbb{F}_2 in dimension $d = 8$.

- $d = 9$, $F = \mathbb{F}_2$ has just been done by Hora and Pudlák
- for $d = 9$, $F = \mathbb{C}$, there are infinitely many pairwise nonequivalent trilinear alternating forms

Main idea of the classification of forms

- find powerful invariants (radicals, radical polynomials, graphs based on radical polynomials), hopefully obtaining a complete set $\mathcal F$ of representatives
- \bullet for each representative f calculate the stabilizer G_f in $G=GL(V).$ How?
- either by clever analysis, or
- by brute force, using randomized stabilizer (birthday paradox) to obtain a subgroup H_f of G_f for every f , then check $\sum_{f \in \mathcal{F}} [G : H_f] = |{\rm space}|$ to guarantee $H_f = G_f$

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

• $f = f_0 = 0$, $|G_f| = 5348063769211699200$

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

- $f = f_0 = 0$, $|G_f| = 5348063769211699200$
- $f = f_{21} = 123 + 145 + 168 + 347 + 258 + 267$, $|G_f| = 192$

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

- $f = f_0 = 0$, $|G_f| = 5348063769211699200$
- $f = f_{21} = 123 + 145 + 168 + 347 + 258 + 267$, $|G_f| = 192$

Small stabilizers are very hard to find.

Parameters for combinatorial polarization

Recall that code loops over V are in one-to-one correspondence with (squaring) maps $P: V \to \mathbb{F}_2$ such that P_3 is a trilinear alternating form.

Let (e_1, \ldots, e_d) be an ordered basis of V.

• Since $P_3 = 0$, the map $P: V \to \mathbb{F}_2$ is determined by the values

$$
P(e_i) = \omega_i, \quad P_2(e_i, e_j) = \omega_{ij}, \quad P_3(e_i, e_j, e_k) = \omega_{ijk}
$$

for $1 \leq i < j < k \leq d$.

• Conversely, given any parameters ω_i , ω_{ij} , $\omega_{ijk} \in \mathbb{F}_2$, there is a unique $P: V \to \mathbb{F}_2$ with $P_3 = 0$ and those parameters.

The parameter space

Let $F = \mathbb{F}_2$, $V = F^d$ and $\Omega_d = F^{\binom{d}{1} + \binom{d}{2} + \binom{d}{3}}$.

- The group $GL(V)$ acts on maps $V \to F$ by $P^{\varphi}(u) = P(\varphi(u))$.
- GL(V) also acts on maps $P: V \rightarrow F$ with $P_3 = 0$.
- Thus $GL(V)$ acts on the **parameter space** Ω_d .

The action of $GL(V)$ on the parameter space

Lemma

Let V be a vector space over $F = \mathbb{F}_2$ with ordered basis (e_1, \ldots, e_d) . Let $B=(b_{ij})\in$ GL(V) and $\omega\in\Omega_d.$ The coordinates of ω^B are obtained as follows:

$$
\omega_{uvw}^{B} = \sum_{i < j < k} (b_{iu}b_{jv}b_{kw} + b_{iu}b_{kv}b_{jw} + b_{ju}b_{iv}b_{kw} + b_{ju}b_{kv}b_{iw} + b_{ku}b_{iv}b_{jw} + b_{ku}b_{jv}b_{iw})\omega_{ijk}
$$
\n
$$
\omega_{uv}^{B} = \sum_{i < j} (b_{iu}b_{jv} + b_{ju}b_{iv})\omega_{ij}
$$
\n
$$
+ \sum_{i < j < k} (b_{iu}b_{ju}b_{kv} + b_{iu}b_{ku}b_{jv} + b_{ju}b_{ku}b_{iv} + b_{iu}b_{jv}b_{kv} + b_{ju}b_{iv}b_{kv} + b_{ku}b_{iv}b_{jv})\omega_{ijk}
$$
\n
$$
\omega_{u}^{B} = \sum_{i} b_{iu}\omega_{i} + \sum_{i < j < k} b_{iu}b_{ju}\omega_{ij} + \sum_{i < j < k} b_{iu}b_{ju}b_{ku}\omega_{ijk}.
$$

Vojtěchovský (University of Denver) [Code loops in dimension up to 8](#page-0-0) AAA '92 20 / 24

Stratified group action I

The action of $GL(V)$ on Ω_d is stratified in the following sense.

Definition

Let $X = X_1 \times \cdots \times X_m$ be a set and suppose that a group G acts on X. The action of G on X is stratified (with respect to the decomposition $X_1 \times \cdots \times X_m$) if:

(i) for every $1 \le i \le m$ the action of G on X induces an action on $X_i \times \cdots \times X_m$ and

(ii) for every $1\leq i\leq m$ and every $(x_i,\ldots,x_m)\in X_i\times\cdots\times X_m$ the stabilizer $\textit{G}_{\left(\textit{x}_{i}, \dots, \textit{x}_{m}\right)}$ induces an action on $X_1 \times \cdots \times X_{i-1} \times (x_i, \ldots, x_m).$

Stratified group action II

Theorem

If the action of a group G on $X = X_1 \times \cdots \times X_m$ is stratified, then X/G consists of all tuples (x_1, \ldots, x_m) , where

$$
x_m \in X_m/G,
$$

\n
$$
x_{m-1} \in (X_{m-1} \times x_m)/G_{x_m},
$$

\n...
\n
$$
x_1 \in (X_1 \times (x_2, ..., x_m))/G_{(x_2,...,x_m)}
$$

.

Outline of the algorithm

- for $d \leq 6$ it takes a few seconds
- for $d = 7$ and, mainly $d = 8$, we can use existing classifications of trilinear alternating forms (which we independently verified in a matter of days)
- there are many code loops in $d = 8$ because some of the stabilizers G_A are very small
- $\bullet\,$ we use permutation representation for the affine action on $\mathbb{F}_2^{d\choose 2}\times A;$ each generator takes a few hours to process with $d=8$, $\binom{d}{2}$ $\binom{d}{2} = 28.$
- $\bullet\,$ the action on $\mathbb{F}_2^{\binom{d}{1}}\times\,$ C \times A has to be run for many pairs $\,C$ \times $A.$

