Code loops in dimension up to 8

E.A. O'Brien and Petr Vojtěchovský

Arbeitstagung Allgemeine Algebra Czech University of Life Sciences May 29, 2016

 Introduction History Code loops Combinatorial polarization Symplectic Moufang 2-loops Results of Hsu

 Introduction History Code loops Combinatorial polarization Symplectic Moufang 2-loops Results of Hsu

2 Enumeration
 Trilinear alternating forms
 Stratified action of GL(V)
 Code loops

 Introduction History Code loops Combinatorial polarization Symplectic Moufang 2-loops Results of Hsu

Enumeration Trilinear alternating forms Stratified action of *GL(V)* Code loops The construction of the Monster simple group is based on the binary Golay code, the Leech lattice, and a remarkable nonassociative loop discovered by R.A. Parker.

-- J.H. Conway in "The Monster Group and its 196884-dimensional space"

History

History

Some history

1984 The Monster group is discovered by Griess

History

Some history

1984 The Monster group is discovered by Griess

1985 Conway publishes a simplified construction

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps
- 2010 Drápal and V describe code loops in both parities combinatorially

- 1984 The Monster group is discovered by Griess
- 1985 Conway publishes a simplified construction
- 1986 Griess generalizes Parker's construction, coins the name code loop
- 1990 Chein and Goodaire describe Moufang loops with a unique nonidentity square
- 1994 Aschbacher classifies symplectic Moufang 2-loops in terms of the squaring map and obtains local 2-subgroups of certain sporadic groups
- 1995 Richardson constructs local *p*-subgroups in certain sporadic groups using odd code loops
- 2000 Hsu realizes that code loops, symplectic Moufang 2-loops and small Frattini Moufang 2-loops are the same thing
- 2007 Nagy and V enumerate code loops of order 64
- 2008 Nagy shows how to construct code loops directly from squaring maps
- 2010 Drápal and V describe code loops in both parities combinatorially
- 2015 Hora and Pudlák classify trilinear alternating forms over \mathbb{F}_2 in dimension 8

Code loops

Doubly even codes

For a vector v in \mathbb{F}_2^n let |v| be the **Hamming weight** of v, the number of nonzero coordinates of v.

Let $u \cap v$ be the vector such that $(u \cap v)_i = \min\{u_i, v_i\}$.

Definition

A binary code V is **doubly even** if |v| is a multiple of 4 for every $v \in V$.

If V is doubly even then $|u \cap v|/2$ is an integer for every $u, v \in V$.

Loops and Moufang loops

Definition

A **loop** is a groupoid (Q, \cdot) with identity element 1 such that the translations $L_x : y \mapsto xy$, $R_x : y \mapsto yx$ are bijections of Q.

Definition

A loop is **Moufang** if it satisfies the identity x(y(xz)) = ((xy)x)z.

Code loops

Factor sets for doubly even codes

Let V be a doubly even code. A mapping $\theta: V \times V \to \mathbb{F}_2$ is a **factor set** if

- $\theta(u, u) \equiv |u|/4$,
- $\theta(u, v) + \theta(v, u) \equiv |u \cap v|/2$,
- $\theta(u, v) + \theta(u + v, w) + \theta(v, w) + \theta(u, v + w) \equiv |u \cap v \cap w|.$

Theorem (Griess)

Every doubly even code V admits a factor set, uniquely determined up to a coboundary.

Griess' code loops

Definition

Let V be a doubly even code and $\theta: V \times V \to \mathbb{F}_2$ its factor set. Define $\mathcal{Q}(V, \theta)$ on $\mathbb{F}_2 \times V$ by

 $(a, u)(b, v) = (a + b + \theta(u, v), uv).$

Theorem (Griess)

The loop $Q(V, \theta)$ is always Moufang and its isomorphism type does not depend on the choice of the factor set θ . It is the **code loop** of V.

Combinatorial polarization

Let $f: V \to F$ be mapping such that f(0) = 0. The *m*-th derived form $f_m: V^m \to F$ is defined by

$$f_m(u_1,\ldots,u_m) = \sum_{I \subseteq \{1,\ldots,m\}} (-1)^{m-|I|} f(\sum_{i \in I} u_i).$$

Notes:

- $f_2(u_1, u_2) = f(u_1 + u_2) f(u_1) f(u_2)$
- every *f_m* is symmetric
- $f_{m+1} = 0$ if and only if f_m is *m*-additive.
- over \mathbb{F}_2 , every f_m is alternating (vanishes when argument is repeated)

Symplectic 2-loops and the squaring map

Definition

A 2-loop Q is symplectic if it contains a central subloop F of order 2 such that Q/F = V is an elementary abelian 2-group.

In a symplectic 2-loop $\mathcal{Q}(V,\theta)$, the squaring map $P: x \mapsto x^2$ can be viewed as a map $V \to F$ since $(a, u)(a, u) = (\theta(u, u), 0)$.

Symplectic Moufang 2-loops

Theorem (Aschbacher)

Let V be a vector space over \mathbb{F}_2 . Then:

- A symplectic 2-loop over V is Moufang if and only if P_2 is the commutator map, P_3 is the associator map and $P_4 = 0$.
- Given a map f : V → F such that f₄ = 0, there is a symplectic Moufang 2-loop with P = f.
- Two 2-symplectic Moufang loops over V are isomorphic if and only if their squaring maps are conjugate in GL(V).

Results of Hsu

Results of Hsu

A Moufang *p*-loop Q is **small Frattini** if it possesses a normal subloop F of order dividing *p* such that Q/F is an elementary abelian *p*-group.

Theorem (Hsu)

- In a small Frattini Moufang loop the subloop F is central.
- Nonassociative small Frattini Moufang loops exist iff $p \leq 3$.
- Small Frattini Moufang 2-loops = code loops = symplectic Moufang 2-loops.

1 Introduction

History Code loops Combinatorial polarization Symplectic Moufang 2-loops Results of Hsu

2 Enumeration
 Trilinear alternating forms
 Stratified action of GL(V)
 Code loops

Trilinear alternating forms

Two trilinear alternating forms $f, g: V^3 \to F$ are **equivalent** if there is $\varphi \in GL(V)$ such that $f(\varphi(u), \varphi(v), \varphi(w)) = g(u, v, w)$.

Theorem (Cohen and Helminck 1988)

Classified trilinear alternating forms over \mathbb{F}_2 in dimension ≤ 7 .

Theorem (Hora and Pudlák 2015)

There are 32 trilinear alternating forms over \mathbb{F}_2 in dimension d = 8.

- d = 9, $F = \mathbb{F}_2$ has just been done by Hora and Pudlák
- for *d* = 9, *F* = ℂ, there are infinitely many pairwise nonequivalent trilinear alternating forms

Main idea of the classification of forms

- find powerful invariants (radicals, radical polynomials, graphs based on radical polynomials), hopefully obtaining a complete set *F* of representatives
- for each representative f calculate the stabilizer G_f in G = GL(V). How?
- either by clever analysis, or
- by brute force, using randomized stabilizer (birthday paradox) to obtain a subgroup H_f of G_f for every f, then check
 ∑_{f∈F}[G : H_f] = |space| to guarantee H_f = G_f

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

• $f = f_0 = 0$, $|G_f| = 5348063769211699200$

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

- $f = f_0 = 0$, $|G_f| = 5348063769211699200$
- $f = f_{21} = 123 + 145 + 168 + 347 + 258 + 267$, $|G_f| = 192$

The following two trilinear alternating forms have the largest (resp. smallest) stabilizer:

- $f = f_0 = 0$, $|G_f| = 5348063769211699200$
- $f = f_{21} = 123 + 145 + 168 + 347 + 258 + 267$, $|G_f| = 192$

Small stabilizers are very hard to find.

Parameters for combinatorial polarization

Recall that code loops over V are in one-to-one correspondence with (squaring) maps $P: V \to \mathbb{F}_2$ such that P_3 is a trilinear alternating form.

- Let (e_1, \ldots, e_d) be an ordered basis of V.
 - Since $P_3 = 0$, the map $P: V \to \mathbb{F}_2$ is determined by the values

$$P(e_i) = \omega_i, \quad P_2(e_i, e_j) = \omega_{ij}, \quad P_3(e_i, e_j, e_k) = \omega_{ijk}$$

for $1 \leq i < j < k \leq d$.

• Conversely, given any parameters ω_i , ω_{ij} , $\omega_{ijk} \in \mathbb{F}_2$, there is a unique $P: V \to \mathbb{F}_2$ with $P_3 = 0$ and those parameters.

The parameter space

Let $F = \mathbb{F}_2$, $V = F^d$ and $\Omega_d = F^{\binom{d}{1}} + \binom{d}{2} + \binom{d}{3}$.

- The group GL(V) acts on maps $V \to F$ by $P^{\varphi}(u) = P(\varphi(u))$.
- GL(V) also acts on maps $P: V \to F$ with $P_3 = 0$.
- Thus GL(V) acts on the parameter space Ω_d .

The action of GL(V) on the parameter space

Lemma

Let V be a vector space over $F = \mathbb{F}_2$ with ordered basis (e_1, \ldots, e_d) . Let $B = (b_{ij}) \in GL(V)$ and $\omega \in \Omega_d$. The coordinates of ω^B are obtained as follows:

$$\begin{split} \omega^{B}_{uvw} &= \sum_{i < j < k} (b_{iu}b_{jv}b_{kw} + b_{iu}b_{kv}b_{jw} + b_{ju}b_{iv}b_{kw} + b_{ju}b_{kv}b_{iw} + b_{ku}b_{iv}b_{jw} + b_{ku}b_{jv}b_{iw})\omega_{ijk} \\ \omega^{B}_{uv} &= \sum_{i < j} (b_{iu}b_{jv} + b_{ju}b_{iv})\omega_{ij} \\ &+ \sum_{i < j < k} (b_{iu}b_{ju}b_{kv} + b_{iu}b_{ku}b_{jv} + b_{ju}b_{ku}b_{iv} + b_{iu}b_{jv}b_{kv} + b_{ju}b_{iv}b_{kv} + b_{ku}b_{iv}b_{jv})\omega_{ijk} \\ \omega^{B}_{u} &= \sum_{i} b_{iu}\omega_{i} + \sum_{i < j} b_{iu}b_{ju}\omega_{ij} + \sum_{i < j < k} b_{iu}b_{ju}b_{ku}\omega_{ijk}. \end{split}$$

Vojtěchovský (University of Denver)

Stratified action of GL(V)

Stratified group action I

The action of GL(V) on Ω_d is stratified in the following sense.

Definition

Let $X = X_1 \times \cdots \times X_m$ be a set and suppose that a group G acts on X. The action of G on X is **stratified** (with respect to the decomposition $X_1 \times \cdots \times X_m$) if:

(i) for every $1 \le i \le m$ the action of G on X induces an action on $X_i \times \cdots \times X_m$, and

(ii) for every 1 ≤ i ≤ m and every (x_i,..., x_m) ∈ X_i × ··· × X_m the stabilizer G_(x_i,...,x_m) induces an action on X₁ × ··· × X_{i-1} × (x_i,...,x_m).

Stratified group action II

Theorem

If the action of a group G on $X = X_1 \times \cdots \times X_m$ is stratified, then X/G consists of all tuples (x_1, \ldots, x_m) , where

$$\begin{aligned} x_m \in X_m/G, \\ x_{m-1} \in (X_{m-1} \times x_m)/G_{x_m}, \\ \dots \\ x_1 \in (X_1 \times (x_2, \dots, x_m))/G_{(x_2, \dots, x_m)}) \end{aligned}$$

Outline of the algorithm

- for $d \le 6$ it takes a few seconds
- for d = 7 and, mainly d = 8, we can use existing classifications of trilinear alternating forms (which we independently verified in a matter of days)
- there are many code loops in d = 8 because some of the stabilizers G_A are very small
- we use permutation representation for the affine action on $\mathbb{F}_{2}^{\binom{d}{2}} \times A$; each generator takes a few hours to process with d = 8, $\binom{d}{2} = 28$.
- the action on $\mathbb{F}_{2}^{\binom{d}{1}} \times C \times A$ has to be run for many pairs $C \times A$.

d	0	1	2	3	4	5	6	7	8
n	2	4	8	16	32	64	128	256	8 512
gn	1	2	5	14	51	267	2328	56092	10494213

d	0	1	2	3	4	5	6	7	8
n	2	4	8	16	32	64	128	256	8 512
gn	1	2	5	14	51	267	2328	56092	10494213 ?
m _n	1	2	5	19	122	4529	?	?	?

d	0	1	2	3	4	5	6	7	8
									512
gn	1	2	5	14	51	267	2328	56092	10494213 ?
m _n	1	2	5	19	122	4529	?	?	?
ℓ_n	1	2	4	10	23	88			'

d	0	1	2	3	4	5	6	7	8
n	2	4	8	16	32	64	128	256	512
gn	1	2	5	14	51	267	2328	56092	10494213
m _n	1	2	5	19	122	4529	?	?	?
ℓ_n	1	2	4	10	23	88	767	80826	937791557