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Partially ordered monoids

Definition

A structure (S; ·,6, 1) such that

(P1) (S; ·, 1) is a commutative monoid,

(P2) 6 is a compatible partial order
(a 6 b implies a · c 6 b · c)

is called a (commutative) partially ordered monoid,
or pomonoid for short.

Guiding example

A t-norm is a binary operation on the real unit interval,
used in fuzzy logic to interpret the conjunction.

Given a t-norm � : [0, 1]2 → [0, 1],

([0, 1];�,6, 1)

is a pomonoid.
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Homomorphisms and coextensions

Definition

Let E and S be pomonoids.
A homomorphism π : E → S is a homomorphism of monoids
that also preserves the order.

Let π be

surjective

and order-determining,
i.e., for any x, y ∈ E, ϕ(x) < ϕ(y) implies x < y.

In this case we call E a coextension of S.
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A t-norm-based pomonoid and its homomorphic image.

We are concerned with the opposite direction:
the coextensions of pomonoids.
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Group coextensions à la Grillet/Leech

Let π : E → S be a surjective homomorphism of monoids
such that the kernel of π is contained in H.
Then E is a group coextension of S.

Let a ∈ S and A = {c ∈ E : π(c) = a}.
Put T (A) = {t ∈ E : t A ⊆ A},
then the λAt : A→ A, c 7→ t c, where t ∈ T (A),
form a group Γ(A) – called Schützenberger group –,
which acts simply transitive on A.

Moreover, for a, b ∈ S such that b6H a,
let A = π−1(a) and B = π−1(b).
Then ϕA

B : Γ(A)→ Γ(B), λAt 7→ λBt is a group homomorphism.
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Preordered systems of groups

Definition

Let (S;4) be a preordered set.
For any a ∈ S, let (Ga; +, 0) be a group,
and for any a, b ∈ S such that a < b,
let ϕa

b : Ga → Gb be a group homomorphism.

Assume that

ϕa
a = idGa for any a ∈ S,

ϕb
c ◦ ϕa

b = ϕa
c for any a, b, c ∈ S such that a < b < c.

Then G = (Ga)a∈S and ϕ = (ϕa
b )a,b∈S, a<b is called

a preordered system of groups over (S;4).



Group coextensions of monoids

Theorem (P.A. Grillet; J. Leech)

Let (S; ·, 1) be a monoid. Let (G,ϕ) be a preordered system of
groups over (S;6H). For each a, b ∈ S, let σa,b ∈ Gab be such
that:

1 σ1,1 = 0;

2 σa,b = σb,a for any a, b ∈ S;

3 ϕab
abc(σa,b) + σab,c = ϕbc

abc(σb,c) + σa,bc for any a, b, c ∈ S.

Let then
E = {(a, x) : a ∈ S, x ∈ Ga},

endowed with the product

(a, x) (b, y) = (a b, ϕa
ab(x) + ϕb

ab(y) + σa,b).

Then (E; ·, (1, 0)) is a group coextension of S.



Adaptation and generalisation

We shall

take into account a partial order;

use monoids as extending structures
(instead of groups).

Definition

Let (S;4) be a preordered set.
For any a ∈ S, let (Ma; +,6a, 0) be a pomonoid, and for
a, b ∈ S such that a < b, let ϕa

b : Ma →Mb be a (pomonoid)
homomorphism.

Assume that
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b = ϕa
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a preordered system of pomonoids over (S;4).
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Group coextensions of monoids

Theorem (J. Janda, Th. V.)

Let (S; ·, 1) be a pomonoid. Let (M,ϕ) be a preordered system
of pomonoids over (S;6H). For each a, b ∈ S, let σa,b ∈Mab be
such that:

1 σ1,a = 0 for any a ∈ S;

2 σa,b = σb,a for any a, b ∈ S;

3 ϕab
abc(σa,b) + σab,c = ϕbc

abc(σb,c) + σa,bc for any a, b, c ∈ S.

4 if, for a, b, c ∈ S, a < b and a c = b c, then
ϕa
ac(x) + σa,c 6ac ϕ

b
bc(y) + σb,c for any x ∈Ma and y ∈Mb.

Let then E = {(a, x) : a ∈ S, x ∈Ma} be endowed with

(a, x) · (b, y) = (a b, ϕa
ab(x) + ϕb

ab(y) + σa,b),

(a, x) 6E (b, y) if a < b, or a = b and x 6a y.

Then (E; ·, (1, 0)) is a coextension of S.



Example

Let S = {−3,−2,−1, 0} be the four-element chain and put

a · b =


a if b = 0,

b if a = 0,

−3 otherwise.

We define a preordered system (M,ϕ) of pomonoids over
(S,6H):

M0 = R−, M−2 = R, M−1 = M−3 = {0};
ϕ0
−2 : M0 →M−2, x 7→ x.

In addition, we let σa,b = 0 in all cases.



Example

A four-element pomonoid and its coextension to a t-norm-based
pomonoid.



Conclusion

The theory of group coextensions of monoids can be
modified to the case that (i) a compatible order is present
and (ii) pomonoids are used as extending structures.

The method covers an amazingly large amount of those
coextensions of pomonoids that arise in the context of
t-norms used in fuzzy logic.

The method has its limits; certainly not all coextensions
are due to homomorphisms between the congruence classes
seen as pomonoids.
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Outlook: towards a more general framework

Let (E;∧,∨, ·,→, 1) be a residuated `-monoid, that is,

(E;∧,∨, ·, 1) is a lattice-ordered monoid and

a · b 6 c iff a 6 b→ c.

In this case, each congruence ϑ is determined by the class
H = [1]ϑ, which is a convex subalgebra.

Coextension problem

To which extent is E determined by the quotient E/H,
the algebra H, and the lattice order of E?
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Outlook: towards a more general framework

We observe:

Each congruence class C is an H-poset:

λhc = h · c, where h ∈ H, c ∈ C.

The multiplication restricted to a pair C and D of
congruence classes is “bilinear” w.r.t. to the action of H:

λhc · d = c · λhd = λh(c · d), where h ∈ H, c, d ∈ C.

Hence it can be identified with a homomorphism from the
tensor product of the H-posets C and D to C ·D.

Hence we need for the coextension:

the H-posets C, given H and the lattice order of C;

the tensor product of, as well as the homomorphisms
between, H-posets C and D.

E.g., the case that E is a chain and H = R− seems tractable.
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