Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References 0

On representation of lattice-valued frames as quantale algebras

Sergejs Solovjovs

Institute of Mathematics, Faculty of Mechanical Engineering Brno University of Technology Technicka 2896/2, 616 69, Brno, Czech Republic e-mail: solovjovs@fme.vutbr.cz

92nd Workshop on General Algebra

Czech University of Life Sciences, Prague, Czech Republic May 27 – 29, 2016

Lattice-valued frames as quantale algebras

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000		00000000	O	0
Acknow	vledgements				

The author gratefully acknowledges the support of the bilateral project "New Perspectives on Residuated Posets" of the Austrian Science Fund (FWF) (project No. I 1923-N25) and the Czech Science Foundation (GAČR) (project No. 15-34697L).

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000	00	00000000	O	0
Outline					

- Quantale modules and algebras
- 3 Quantale algebras as comma categories
- Quantale algebras as lattice-valued quantales

5 Conclusion

Introduction ●○○	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References 0
Lattice-valued fram	mes				

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Introduction ••••	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion 0	References 0
Lattice-valued fram	mes				

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Introduction ••••	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion 0	References 0
Lattice-valued fram	mes				

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000		0000000		
Lattice-valued fr	ames				

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category (L↓ Frm), i.e., frame homomorphisms L ⁱA A.
A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms (A₁ ^{φt} A₂)_{t∈T} with some properties.
W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000					
Lattice-valued fr	ames				

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category (L↓ Frm), i.e., frame homomorphisms L ⁱA A.
A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms (A₁ ^{φt}→ A₂)_{t∈T} with some properties.
W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

Introduction	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References 0
Lattice-valued fram	mes				

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category (L↓ Frm), i.e., frame homomorphisms L ⁱA/A.
A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms (A₁ ^{φt}→ A₂)_{t∈T} with some properties.
W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000					
Contribution of	this talk				

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate *L*-fuzzy frames of D. Zhang, Y.-M. Liu and *L*-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000					
Contribution of	this talk				

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate *L*-fuzzy frames of D. Zhang, Y.-M. Liu and *L*-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000					
Contribution of	this talk				

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate *L*-fuzzy frames of D. Zhang, Y.-M. Liu and *L*-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000					
Contribution of	this talk				

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate *L*-fuzzy frames of D. Zhang, Y.-M. Liu and *L*-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

Introduction 000	Quantale algebras ●000	Comma categories	Lattice-valued quantales 00000000	Conclusion O	References 0
Quantale modul	les and algebras				
Quanta	les				

- A quantale is a triple (Q, \bigvee, \otimes) such that
 - (Q, \bigvee) is a \bigvee -semilattice;
 - (Q, \otimes) is a semigroup;
 - $q \otimes (\bigvee S) = \bigvee_{s \in S} (q \otimes s)$ and $(\bigvee S) \otimes q = \bigvee_{s \in S} (s \otimes q)$ for every $q \in Q$, $S \subseteq Q$.
- A quantale homomorphism $(P, \bigvee, \otimes) \xrightarrow{\varphi} (Q, \bigvee, \otimes)$ is a map $P \xrightarrow{\varphi} Q$ which preserves \bigvee and \otimes .
- Quant is the category of quantales.

Introduction 000	Quantale algebras 0●00	Comma categories	Lattice-valued quantales 00000000	Conclusion 0	References 0
Quantale modul	es and algebras				
Unital d	quantales				

- A quantale Q is said to be unital provided that there exists an element 1 ∈ Q such that (Q, ⊗, 1) is a monoid.
- Unital quantale homomorphisms additionally preserve the unit.
- UQuant is the subcategory of Quant of unital quantales.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
	0000				
Quantale modul	es and algebras				
~					

Quantale modules

- Given a unital quantale Q, a (unital left) Q-module is a pair (A, *), where A is a ∨-semilattice and Q × A ^{*}→ A is a map (the action of Q on A) such that
 - $q * (\bigvee S) = \bigvee_{s \in S} (q * s)$ for every $q \in Q$, $S \subseteq A$;
 - $(\bigvee S) * a = \bigvee_{s \in S} (s * a)$ for every $S \subseteq Q$, $a \in A$;
 - $q_1 * (q_2 * a) = (q_1 \otimes q_2) * a$ for every $q_1, q_2 \in Q$, $a \in A$;

•
$$1_Q * a = a$$
 for every $a \in A$.

- A Q-module homomorphism (A, *) → (B, *) is a V-preserving map A → B with φ(q * a) = q * φ(a) for every q ∈ Q, a ∈ A.
- Q-Mod is the category of Q-modules.

Introduction 000	Quantale algebras 000●	Comma categories	Lattice-valued quantales 00000000	Conclusion 0	References 0
Quantale modul	es and algebras				
<u> </u>	1 1 1				

Quantale algebras

- For a unital quantale Q, a Q-algebra is a triple $(A, \otimes, *)$ where
 - (A, *) is a Q-module;
 - (A, \otimes) is a quantale;
 - $q * (a_1 \otimes a_2) = (q * a_1) \otimes a_2 = a_1 \otimes (q * a_2)$ for every $q \in Q$, $a_1, a_2 \in A$.
- A Q-algebra homomorphism $(A, \otimes, *) \xrightarrow{\varphi} (B, \otimes, *)$ is a map $A \xrightarrow{\varphi} B$ which is a homomorphism of quantales and Q-modules.
- Q-Alg is the category of Q-algebras.

Introduction 000	Quantale algebras 0000	Comma categories ●0	Lattice-valued quantales 00000000	Conclusion O	References 0
Quantale algebr	as as comma categories				
Prelimi	narv definiti	ions			

Given a unital quantale Q, Q-**UAIg** is the subcategory of Q-**AIg** of unital quantale algebras and unit-preserving homomorphisms.

Definition 6

Given a unital quantale Q, $(Q \downarrow UQuant)_z$ is the category, whose

objects are **UQuant**-morphisms $Q \xrightarrow{i_A} A$ having their range in the center $Z(A) := \{a \in A \mid a \otimes a' = a' \otimes a$ for every $a' \in A\}$ of A; morphisms $(Q \xrightarrow{i_A} A) \xrightarrow{\varphi} (Q \xrightarrow{i_B} B)$ are **UQuant**-morphisms $A \xrightarrow{\varphi} B$ such that $\varphi \circ i_A = i_B$.

Lattice-valued frames as quantale algebras

Introduction 000	Quantale algebras 0000	Comma categories ●0	Lattice-valued quantales 00000000	Conclusion O	References 0
Quantale algebra	as as comma categories				
Drolimi	aanu dafiniti	ana			

Given a unital quantale Q, Q-**UAIg** is the subcategory of Q-**AIg** of unital quantale algebras and unit-preserving homomorphisms.

Definition 6

Given a unital quantale Q, $(Q \downarrow \mathbf{UQuant})_z$ is the category, whose objects are \mathbf{UQuant} -morphisms $Q \xrightarrow{i_A} A$ having their range in the center $Z(A) := \{a \in A \mid a \otimes a' = a' \otimes a \text{ for every } a' \in A\}$ of A; morphisms $(Q \xrightarrow{i_A} A) \xrightarrow{\varphi} (Q \xrightarrow{i_B} B)$ are \mathbf{UQuant} -morphisms $A \xrightarrow{\varphi} B$ such that $\varphi \circ i_A = i_B$.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000	⊙●		0	0
Quantale algebras	as comma categories				

Quantale algebras as comma categories

Theorem 7

Let Q be a unital quantale.

- There is a functor Q-UAlg \xrightarrow{F} $(Q \downarrow UQuant)_z$, $F(A,*) = (Q \xrightarrow{i_A} A)$, $F\varphi = \varphi$, where $i_A(q) = q * 1_A$.
- So There is a functor $(Q \downarrow UQuant)_z \xrightarrow{G} Q$ -UAlg, $G(Q \xrightarrow{i_A} A) = (A, *), G\varphi = \varphi$, where $q * a = i_A(q) \otimes a$.
- **3** $G \circ F = 1_{Q-\text{UAlg}}$ and $F \circ G = (Q \downarrow \text{UQuant})_z$, *i.e.*, the categories Q-UAlg and $(Q \downarrow \text{UQuant})_z$ are isomorphic.

Lattice-valued frames as quantale algebras

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References 0
Quantale modul	les as lattice-valued join-s	emilattices			
Prelimi	nary definiti	ons			

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_I q_2 = \bigvee \{ q \in Q \mid q \otimes q_1 \leqslant q_2 \}.$
- Every Q-module (A, *) has a binary operation (i.e., residuation)
 a₁ → a₂ = ∨{q ∈ Q | q * a₁ ≤ a₂}.

Definition 9

Given a map $f: X \to Y$ and a \bigvee -semilattice L, there is the forward L-powerset operator $f_L^{\to}: L^X \to L^Y$, $(f_L^{\to}(\alpha))(y) = \bigvee \{\alpha(x) \mid f(x) = y\}$.

Definition 10

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$, $a \in L$ have a map $\alpha_S^a : X \to L$ with $\alpha_S^a(x) = a$ for $x \in S$; otherwise, $\alpha_S^a(x) = \bot$.

Lattice-valued frames as quantale algebras

Introduction 000	Quantale algebras	Comma categories 00	Lattice-valued quantales ●0000000	Conclusion O	References 0
Quantale modu	les as lattice-valued join-s	emilattices			
Prelimi	narv definiti	ions			

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_I q_2 = \bigvee \{ q \in Q \mid q \otimes q_1 \leqslant q_2 \}.$
- Every Q-module (A, *) has a binary operation (i.e., residuation)
 a₁ → a₂ = ∨{q ∈ Q | q * a₁ ≤ a₂}.

Definition 9

Given a map $f: X \to Y$ and a \bigvee -semilattice L, there is the forward L-powerset operator $f_L^{\to}: L^X \to L^Y$, $(f_L^{\to}(\alpha))(y) = \bigvee \{\alpha(x) \mid f(x) = y\}$.

Definition 10

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$, $a \in L$ have a map $\alpha_S^a : X \to L$ with $\alpha_S^a(x) = a$ for $x \in S$; otherwise, $\alpha_S^a(x) = \bot$.

Lattice-valued frames as quantale algebras

Introduction 000	Quantale algebras	Comma categories 00	Lattice-valued quantales ●0000000	Conclusion O	References 0
Quantale modu	les as lattice-valued join-s	emilattices			
Prelimi	narv definiti	ions			

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_I q_2 = \bigvee \{ q \in Q \mid q \otimes q_1 \leqslant q_2 \}.$
- Every Q-module (A, *) has a binary operation (i.e., residuation)
 a₁ → a₂ = ∨{q ∈ Q | q * a₁ ≤ a₂}.

Definition 9

Given a map $f: X \to Y$ and a \bigvee -semilattice L, there is the forward L-powerset operator $f_L^{\to}: L^X \to L^Y$, $(f_L^{\to}(\alpha))(y) = \bigvee \{\alpha(x) \mid f(x) = y\}$.

Definition 10

Given a \bigvee -semilattice L and a set X, every $S \subseteq X$, $a \in L$ have a map $\alpha_S^a : X \to L$ with $\alpha_S^a(x) = a$ for $x \in S$; otherwise, $\alpha_S^a(x) = \bot$.

Lattice-valued frames as quantale algebras

 Introduction
 Quantale algebras
 Comma categories
 Lattice-valued quantales
 Conclusion
 References

 000
 000
 00
 0000000
 0
 0
 0

 Quantale modules as lattice-valued join-semilattices
 0
 0
 0
 0

Lattice-valued V-semilattices

Definition 11

• Given a unital quantale Q, a Q- \bigvee -semilattice is a triple (A, e, \bigsqcup) , where $A \times A \xrightarrow{e} Q$ is a map (Q-partial order) with

•
$$1_Q \leq e(a, a)$$
 for every $a \in A$;

- $e(a_2, a_3) \otimes e(a_1, a_2) \leqslant e(a_1, a_3)$ for every $a_1, a_2, a_3 \in A$;
- $1_Q \leq e(a_1, a_2), 1_Q \leq e(a_2, a_1) \text{ imply } a_1 = a_2, \text{ for every } a_1, a_2 \in A;$

and $Q^A \xrightarrow{\sqcup} A$ is another map (*Q*-join operation) with $e(\bigsqcup \alpha, a) = \bigwedge_{a' \in A} (\alpha(a') \rightarrow_I e(a', a))$ for every $\alpha \in Q^A$, $a \in A$.

- A Q-V-semilattice homomorphism (A, e, □) → (B, e, □) is a map A → B such that φ(□α) = □φ_Q→(α) for every α ∈ Q^A.
- **Sup**(Q) is the category of Q-V-semilattices.

Introd	

Quantale algebras

Comma categories

Lattice-valued quantales

Conclusion References 0 0

Quantale modules as lattice-valued join-semilattices

Example of lattice-valued V-semilattices

Lemma 12

Every unital quantale Q provides a Q- \bigvee -semilattice (Q, e, \bigsqcup) , where the maps e and || are defined by

•
$$e(q_1,q_2)=q_1
ightarrow_I q_2$$
 for every $q_1,q_2 \in Q$;

•
$$\bigsqcup \alpha = \bigvee_{q \in Q} (\alpha(q) \otimes q)$$
 for every $\alpha \in Q^Q$.

Lattice-valued frames as quantale algebras

Quantale modules as lattice-valued join-semilattices

Quantale modules as lattice-valued \bigvee -semilattices

Theorem 13

Let Q be a unital quantale.

• There exists a functor Q-Mod \xrightarrow{F} Sup(Q), $F(A, *) = (A, e, \sqcup)$, $F\varphi = \varphi$, where

•
$$e(a_1, a_2) = a_1 \rightarrow a_2;$$

•
$$\square \alpha = \bigvee_{a \in A} (\alpha(a) * a).$$

So There exists a functor $\operatorname{Sup}(Q) \xrightarrow{G} Q\operatorname{-Mod}, G(A, e, \bigsqcup) = (A, \leq, \bigvee, *), G\varphi = \varphi, where$ $e.e. at <math>\leq z_0$ iff $1 \leq e(z_1, z_0)$ for every at $z_0 \in A$:

•
$$a_1 \leq a_2$$
 iff $1_Q \leq e(a_1, a_2)$, for every $a_1, a_2 \in A$;

•
$$\bigvee S = \bigsqcup \alpha_{S}^{iQ}$$
 for every $S \subseteq A$;

•
$$q * a = \bigsqcup \alpha_{\{a\}}^{q}$$
 for every $q \in Q$, $a \in A$.

3 $G \circ F = 1_{Q-Mod}$ and $F \circ G = 1_{Sup(Q)}$, i.e., the categories Q-Mod and Sup(Q) are isomorphic.

Lattice-valued frames as quantale algebras

References

Introduction 000	Quantale algebras	Comma categories	Lattice-valued quantales ○○○○●○○○	Conclusion 0	References 0
Quantale algebras	s as lattice-valued quant	ales			

Lattice-valued quantales

- Given a unital quantale Q, a Q-quantale is a tuple (A, e, ∐, ⊗), in which (A, e, ∐) is a Q-V-semilattice, and A × A → A is a map (Q-multiplication on A) such that
 - (A, \otimes) is a semigroup;
 - $a \otimes (\bigsqcup \alpha) = \bigsqcup (a \otimes \cdot)_Q^{\rightarrow}(\alpha)$ and $(\bigsqcup \alpha) \otimes a = \bigsqcup (\cdot \otimes a)_Q^{\rightarrow}(\alpha)$ for every $a \in A, \ \alpha \in Q^A$.
- A *Q*-quantale homomorphism $(A, e, \bigsqcup, \otimes) \xrightarrow{\varphi} (B, e, \bigsqcup, \otimes)$ is a *Q*-V-semilattice homomorphism $A \xrightarrow{\varphi} B$ preserving \otimes .
- **Quant**(*Q*) is the category of *Q*-quantales.

Quantale algebras

Comma categories

Lattice-valued quantales

Conclusion References o o

Quantale algebras as lattice-valued quantales

Quantale algebras as lattice-valued quantales

Theorem 15

Let Q be a unital quantale.

- There is a functor Q-Alg \xrightarrow{F} Quant(Q), $F(A, \otimes, *) = (A, e, \bigsqcup, \otimes)$, $F\varphi = \varphi$, where e and \bigsqcup are from Theorem 13.
- **3** There is a functor **Quant**(Q) \xrightarrow{G} Q-**Alg**, $G(A, e, \bigsqcup, \otimes) = (A, \leq, \bigvee, *, \otimes)$, $G\varphi = \varphi$, where \leq , \bigvee , * are from Theorem 13.
- **3** $G \circ F = 1_{Q-Alg}$ and $F \circ G = 1_{Quant(Q)}$, *i.e.*, the categories Q-Alg and Quant(Q) are isomorphic.

Lattice-valued frames as quantale algebras

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References 0
Quantale algebras	as lattice-valued frames				

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories $(Q \downarrow UQuant)_z$, Q-UAlg, and UQuant(Q) are isomorphic.

Corollary 17

Given a unital quantale Q, the category $(Q \downarrow UQuant)_z$ is isomorphic to a subcategory of Quant(Q).

Lattice-valued frames as quantale algebras

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000		○○○○○○●○	O	0
Quantale algebras	as lattice-valued frames				

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories $(Q \downarrow UQuant)_z$, Q-UAlg, and UQuant(Q) are isomorphic.

Corollary 17

Given a unital quantale Q, the category $(Q \downarrow UQuant)_z$ is isomorphic to a subcategory of Quant(Q).

Lattice-valued frames as quantale algebras

Quantale algebras

Comma categories

Lattice-valued quantales

Quantale algebras as lattice-valued frames

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- Given a frame L, L-UAlg_{Frm} is the full subcategory of L-UAlg, whose objects have frames as their underlying quantales.
- **Frm**(*L*) is the image of the subcategory *L*-**UAlg**_{*Frm*} under the isomorphism *L*-**UAlg** \xrightarrow{F} **UQuant**(*L*).

• **Frm**(*L*) is isomorphic to the category of *L*-frames of W. Yao.

Corollary 19

For a frame L, the categories $(L \downarrow Frm)$ and Frm(L) are isomorphic.

Lattice-valued frames as quantale algebras

Sergejs Solovjovs

Brno University of Technology

20/23

Quantale algebras

Comma categories

Lattice-valued quantales

Quantale algebras as lattice-valued frames

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- Given a frame L, L-UAlg_{Frm} is the full subcategory of L-UAlg, whose objects have frames as their underlying quantales.
- **Frm**(*L*) is the image of the subcategory *L*-**UAlg**_{*Frm*} under the isomorphism *L*-**UAlg** \xrightarrow{F} **UQuant**(*L*).
- **Frm**(*L*) is isomorphic to the category of *L*-frames of W. Yao.

Corollary 19

For a frame L, the categories $(L \downarrow Frm)$ and Frm(L) are isomorphic.

Lattice-valued frames as quantale algebras

Quantale algebras

Comma categories

Lattice-valued quantales

Quantale algebras as lattice-valued frames

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- Given a frame L, L-UAlg_{Frm} is the full subcategory of L-UAlg, whose objects have frames as their underlying quantales.
- **Frm**(*L*) is the image of the subcategory *L*-**UAlg**_{*Frm*} under the isomorphism *L*-**UAlg** \xrightarrow{F} **UQuant**(*L*).
- **Frm**(*L*) is isomorphic to the category of *L*-frames of W. Yao.

Corollary 19

For a frame L, the categories $(L \downarrow \mathbf{Frm})$ and $\mathbf{Frm}(L)$ are isomorphic.

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion	References 0
Conclusion					
Final re	emarks				

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(*Q*) and **Quant**(*Q*) (fuzzy notion) have the properties of the categories *Q*-**Mod** and *Q*-**Alg** (crisp notion).

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion •	References 0
Conclusion					
Final re	marks				

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(*Q*) and **Quant**(*Q*) (fuzzy notion) have the properties of the categories *Q*-**Mod** and *Q*-**Alg** (crisp notion).

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion •	References 0
Conclusion					
Final re	marks				

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(*Q*) and **Quant**(*Q*) (fuzzy notion) have the properties of the categories *Q*-**Mod** and *Q*-**Alg** (crisp notion).

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion •	References 0
Conclusion					
Final re	marks				

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(*Q*) and **Quant**(*Q*) (fuzzy notion) have the properties of the categories *Q*-**Mod** and *Q*-**Alg** (crisp notion).

Introduction 000	Quantale algebras 0000	Comma categories	Lattice-valued quantales	Conclusion O	References ●
References					
Referen	ces				

- D. Kruml, J. Paseka, Algebraic and Categorical Aspects of Quantales, in: Handbook of Algebra, vol. 5, Elsevier, 2008, pp. 323–362.
- A. Pultr, S. E. Rodabaugh, Lattice-Valued Frames, Functor Categories, and Classes of Sober Spaces, in: Topological and Algebraic Structures in Fuzzy Sets, Kluwer Acad. Publ. 2003, pp. 153–187.
- W. Yao, An approach to fuzzy frames via fuzzy posets, Fuzzy Sets Syst. 166 (1) (2011) 75–89.
- D. Zhang, Y.-M. Liu, *L*-fuzzy version of Stone's representation theorem for distributive lattices, Fuzzy Sets Syst. 76 (2) (1995) 259–270.

Introduction	Quantale algebras	Comma categories	Lattice-valued quantales	Conclusion	References
000	0000	00		O	0

Thank you for your attention!

Lattice-valued frames as quantale algebras

Sergejs Solovjovs

Brno University of Technology

23/23