

On representation of lattice-valued frames as quantale algebras

Sergejs Solovjovs

Institute of Mathematics, Faculty of Mechanical Engineering Brno University of Technology Technicka 2896/2, 616 69, Brno, Czech Republic e-mail: solovjovs@fme.vutbr.cz

92nd Workshop on General Algebra

Czech University of Life Sciences, Prague, Czech Republic May 27 – 29, 2016

[Lattice-valued frames as quantale algebras](#page-38-0) Sergejs Soloviovs Brno University of Technology 1/23

The author gratefully acknowledges the support of the bilateral project "New Perspectives on Residuated Posets" of the Austrian Science Fund (FWF) (project No. I 1923-N25) and the Czech Science Foundation (GAČR) (project No. 15-34697L).

 $\overline{\mathsf{P}}$ GRANTOVÁ AGENTIIRA ČESKÉ REPUBLI

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 2/23

- [Quantale modules and algebras](#page-13-0)
- [Quantale algebras as comma categories](#page-17-0)
- [Quantale algebras as lattice-valued quantales](#page-20-0)

[Conclusion](#page-33-0)

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Origins of lattice-valued frames

- Equivalence of the categories of sober topological spaces (pointset topology) and spatial locales (point-free topology) disclosed a relationship between general topology and universal algebra.
- The concept of fuzzy topological space inspired researchers to provide a fuzzy analogue of the sobriety-spatiality equivalence.
- Lattice-valued point-free topology needed a lattice-valued analogue of locales different from that of lattice-valued algebra.

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category $(L\downarrow$ **Frm**), i.e., frame homomorphisms $L\stackrel{i_{A}}{\rightarrow} A$. A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms $(A_1 \stackrel{\varphi_t}{\longrightarrow} A_2)_{t \in \mathcal{T}}$ with some properties. W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

[Lattice-valued frames as quantale algebras](#page-0-0) Sergeis Soloviovs Brno University of Technology 5/23

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category $(L\downarrow$ **Frm**), i.e., frame homomorphisms $L\stackrel{i_{A}}{\rightarrow} A$. A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms $(A_1 \stackrel{\varphi_t}{\longrightarrow} A_2)_{t \in \mathcal{T}}$ with some properties. W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the comma category $(L\downarrow$ **Frm**), i.e., frame homomorphisms $L\stackrel{i_{A}}{\rightarrow} A$. A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are families of frame homomorphisms $(A_1 \stackrel{\varphi_t}{\longrightarrow} A_2)_{t \in \mathcal{T}}$ with some properties. W. Yao (2011): L-frames are based in the notion of L-partially ordered set; L-frames and L-fuzzy frames are categorically equivalent.

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate L-fuzzy frames of D. Zhang, Y.-M. Liu and L-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate L-fuzzy frames of D. Zhang, Y.-M. Liu and L-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate L-fuzzy frames of D. Zhang, Y.-M. Liu and L-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

- Quantale algebras are motivated by algebras over a not necessarily commutative unital ring.
- Quantale algebras (crisp concept) incorporate L-fuzzy frames of D. Zhang, Y.-M. Liu and L-frames of W. Yao (fuzzy concept).
- Quantale algebras provide a framework for developing fuzzy analogues of the sobriety-spatiality equivalence.
- Quantale algebras (crisp concept) facilitate the study of the categories of different lattice-valued structures (fuzzy concept).

Quantales

- A quantale is a triple $(\mathsf{Q},\bigvee,\otimes)$ such that
	- (Q, \bigvee) is a \bigvee -semilattice;
	- \bullet (Q , \otimes) is a semigroup;
	- $q\otimes (\bigvee S)=\bigvee_{s\in S}(q\otimes s)$ and $(\bigvee S)\otimes q=\bigvee_{s\in S}(s\otimes q)$ for every $q \in Q$, $S \subset Q$.
- A quantale homomorphism $(P,\bigvee,\otimes)\,\stackrel{\varphi}{\to}\, (Q,\bigvee,\otimes)$ is a map $P \stackrel{\varphi}{\rightarrow} Q$ which preserves \bigvee and \otimes .
- **Quant** is the category of quantales.

- \bullet A quantale Q is said to be unital provided that there exists an element $1 \in Q$ such that $(Q, \otimes, 1)$ is a monoid.
- Unital quantale homomorphisms additionally preserve the unit.
- **UQuant** is the subcategory of **Quant** of unital quantales.

Given a unital quantale Q , a (unital left) Q -module is a pair $(A, *)$, where A is a \bigvee -semilattice and $Q \times A \stackrel{*}{\rightarrow} A$ is a map (the action of Q on A) such that

•
$$
q * (\bigvee S) = \bigvee_{s \in S} (q * s)
$$
 for every $q \in Q$, $S \subseteq A$;

•
$$
(\forall S) * a = \bigvee_{s \in S} (s * a)
$$
 for every $S \subseteq Q$, $a \in A$;

$$
\bullet \ \ q_1 \ast (q_2 \ast a) = (q_1 \otimes q_2) \ast a \text{ for every } q_1, q_2 \in Q, a \in A;
$$

•
$$
1_Q * a = a
$$
 for every $a \in A$.

A Q-module homomorphism $(A,*)\stackrel{\varphi}{\to}(B,*)$ is a \bigvee -preserving map $A \xrightarrow{\varphi} B$ with $\varphi(q \ast a) = q \ast \varphi(a)$ for every $q \in Q$, $a \in A$.

Q-**Mod** is the category of Q-modules.

- For a unital quantale Q, a Q-algebra is a triple $(A, \otimes, *)$ where
	- $(A, *)$ is a Q-module;
	- \bullet (A, \otimes) is a quantale;
	- $q * (a_1 \otimes a_2) = (q * a_1) \otimes a_2 = a_1 \otimes (q * a_2)$ for every $q \in Q$, $a_1, a_2 \in A$.
- A Q-algebra homomorphism $(A, \otimes, *) \xrightarrow{\varphi} (B, \otimes, *)$ is a map $A\stackrel{\varphi}{\rightarrow} B$ which is a homomorphism of quantales and Q -modules.
- **↓** Q-**Alg** is the category of Q-algebras.

Given a unital quantale Q, Q-**UAlg** is the subcategory of Q-**Alg** of unital quantale algebras and unit-preserving homomorphisms.

Given a unital quantale Q_i ($Q \downarrow$ **UQuant**)_z is the category, whose

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 11/23

Given a unital quantale Q, Q-**UAlg** is the subcategory of Q-**Alg** of unital quantale algebras and unit-preserving homomorphisms.

Definition 6

Given a unital quantale Q , $(Q \downarrow \mathbf{UQuant})_z$ is the category, whose \circ objects are $\sf UQuant$ -morphisms $Q \stackrel{i_A}{\to} A$ having their range in the center $\mathcal{Z}(A):=\{a\in A\,|\,a\otimes a'=a'\otimes a$ for every $a'\in A\}$ of $A;$ $~$ morphisms $~(\mathsf{Q} \, \xrightarrow{i_{\mathsf{A}}}~ A) \quad \xrightarrow{\varphi} ~ ~ ~(\mathsf{Q} \, \xrightarrow{i_{\mathsf{B}}}~ B)~$ are $~\mathsf{UQuant}\textrm{-}$ morphisms $A \xrightarrow{\varphi} B$ such that $\varphi \circ i_A = i_B$.

Quantale algebras as comma categories

Theorem 7

Let Q *be a unital quantale.*

- \bullet There is a functor Q-**UAlg** $\stackrel{F}{\to}$ $(Q\downarrow$ **UQuant**)_z, $F(A,*)=$ $(Q \stackrel{i_A}{\rightarrow} A)$, $F\varphi = \varphi$, where $i_A(q) = q * 1_A$.
- \bullet There is a functor $(Q\downarrow \textbf{UQuant})_z \stackrel{G}{\rightarrow} Q\text{-}\textbf{UAlg}$, $G(Q\stackrel{i_A}{\rightarrow} A)=0$ $(A, *)$ *,* $G\varphi = \varphi$ *, where* $q * a = i_A(q) \otimes a$ *.*
- **3** $G \circ F = 1_{Q\text{-UAlg}}$ and $F \circ G = (Q \downarrow \text{UQuant})_z$, *i.e.*, the *categories* Q*-***UAlg** *and* (Q ↓ **UQuant**)^z *are isomorphic.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 12/23

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_l q_2 = \bigvee$ { $q \in Q \mid q \otimes q_1 \leqslant q_2$ }.
- Every Q-module (A, ∗) has a binary operation (i.e., residuation) $a_1 \twoheadrightarrow a_2 = \bigvee \{q \in Q \, | \, q * a_1 \leqslant a_2\}.$

Given a map f : $X \to Y$ and a \bigvee -semilattice L, there is the forward Lpowerset operator $f_L^{\rightarrow} : L^X \rightarrow L^Y$, $(f_L^{\rightarrow}(\alpha))(y) = \bigvee \{ \alpha(x) \mid f(x) = y \}.$

Given a \bigvee -semilattice L and a set X , every $S \subseteq X$, $a \in L$ have a map $\alpha_S^a : X \to L$ with $\alpha_S^a(x) = a$ for $x \in S$; otherwise, $\alpha_S^a(x) = \bot$.

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 13/23

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_l q_2 = \bigvee$ { $q \in Q \mid q \otimes q_1 \leqslant q_2$ }.
- Every Q-module (A, ∗) has a binary operation (i.e., residuation) $a_1 \twoheadrightarrow a_2 = \bigvee \{q \in Q \, | \, q * a_1 \leqslant a_2\}.$

Definition 9

Given a map f : X \rightarrow Y and a \bigvee -semilattice L , there is the forward L powerset operator f_L^{\rightarrow} : $L^X \rightarrow L^Y$, $(f_L^{\rightarrow}(\alpha))(y) = \bigvee \{ \alpha(x) \mid f(x) = y \}$.

Given a \bigvee -semilattice L and a set X , every $S \subseteq X$, $a \in L$ have a map $\alpha_S^a : X \to L$ with $\alpha_S^a(x) = a$ for $x \in S$; otherwise, $\alpha_S^a(x) = \bot$.

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 13/23

- Every quantale Q has a binary operation (i.e., residuation) $q_1 \rightarrow_l q_2 = \bigvee$ { $q \in Q \mid q \otimes q_1 \leqslant q_2$ }.
- Every Q-module (A, ∗) has a binary operation (i.e., residuation) $a_1 \twoheadrightarrow a_2 = \bigvee \{q \in Q \, | \, q * a_1 \leqslant a_2\}.$

Definition 9

Given a map f : X \rightarrow Y and a \bigvee -semilattice L , there is the forward L powerset operator f_L^{\rightarrow} : $L^X \rightarrow L^Y$, $(f_L^{\rightarrow}(\alpha))(y) = \bigvee \{ \alpha(x) \mid f(x) = y \}$.

Definition 10

Given a \bigvee -semilattice L and a set X , every $S \subseteq X$, $a \in L$ have a map $\alpha_{\mathcal{S}}^{\mathsf{a}}: X \to L$ with $\alpha_{\mathcal{S}}^{\mathsf{a}}(x) = a$ for $x \in \mathcal{S}$; otherwise, $\alpha_{\mathcal{S}}^{\mathsf{a}}(x) = \bot$.

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 13/23

Lattice-valued W -semilattices

Definition 11

Given a unital quantale Q , a $Q-\sqrt{\ }$ -semilattice is a triple (A, e, \bigsqcup) , where $A \times A \stackrel{e}{\to} Q$ is a map $(Q$ -partial order) with

•
$$
1_Q \leqslant e(a, a)
$$
 for every $a \in A$;

- $e(a_2, a_3) \otimes e(a_1, a_2) \leq e(a_1, a_3)$ for every $a_1, a_2, a_3 \in A$;
- \bullet 10 ≤ e(a₁, a₂), 10 ≤ e(a₂, a₁) imply a₁ = a₂, for every a₁, a₂ ∈ A;

and $\mathcal{Q}^A\ \stackrel{\bigsqcup}{\longrightarrow}\ A$ is another map $(\mathcal{Q}\textrm{-join operation})$ with $e(\bigsqcup \alpha, a) = \bigwedge_{a' \in A} (\alpha(a') \to_{I} e(a', a))$ for every $\alpha \in Q^A$, $a \in A$.

- A Q- \bigvee -semilattice homomorphism $(A, e, \bigsqcup) \stackrel{\varphi}{\to} (B, e, \bigsqcup)$ is a map $A \stackrel{\varphi}{\to} B$ such that $\varphi(\bigsqcup \alpha) = \bigsqcup \varphi_Q^{\to}(\alpha)$ for every $\alpha \in Q^A$.
- $\mathsf{Sup}(\mathsf{Q})$ is the category of $\mathsf{Q}\text{-}\mathsf{V}\text{-}\mathsf{semilatrices}.$

Lemma 12

Every unital quantale Q *provides a* Q*-*W *-semilattice* (Q, e, F)*, where the maps* e *and* F *are defined by*

•
$$
e(q_1, q_2) = q_1 \rightarrow_q q_2
$$
 for every $q_1, q_2 \in Q$;

$$
\bullet\ \bigsqcup \alpha=\bigvee_{q\in Q}(\alpha(q)\otimes q)\ \text{for every}\ \alpha\in Q^Q.
$$

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 15/23

Quantale modules as lattice-valued W -semilattices

Theorem 13

Let Q *be a unital quantale.*

1 There exists a functor Q-Mod \xrightarrow{F} Sup (Q) , $F(A, *)$ = (A, e, \bigsqcup) *,* $F \varphi = \varphi$ *, where* $e(a_1, a_2) = a_1 \rightarrow a_2$; $\bigcup \alpha = \bigvee_{a \in A} (\alpha(a) * a).$

2 There exists a functor $\mathsf{Sup}(\mathsf{Q}) \stackrel{G}{\to} \mathsf{Q}\text{-}\mathsf{Mod}, \ \mathsf{G}(\mathsf{A}, \ \mathsf{e}, \bigsqcup) =$ $(A, \leqslant, \vee, *)$ *,* $G\varphi = \varphi$ *, where* • $a_1 \leq a_2$ *iff* $1_Q \leq e(a_1, a_2)$ *, for every* $a_1, a_2 \in A$ *;* $\bigvee S = \bigsqcup \alpha_S^{1\overline{Q}}$ for every $S \subseteq A$; $q * a = \bigsqcup \alpha_q^q$ $\{a\}$ for every $q \in Q$, $a \in A$. ³ G ◦ F = 1Q*-***Mod** *and* F ◦ G = 1**Sup**(Q) *, i.e., the categories* Q*-***Mod** *and* **Sup**(Q) *are isomorphic.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 16/23

Lattice-valued quantales

Definition 14

- Given a unital quantale Q, a Q-quantale is a tuple $(A, e, \bigsqcup, \otimes)$, in which (A, e, \bigsqcup) is a Q - \bigvee -semilattice, and $A \times A \overset{\otimes}{\to} A$ is a map $(Q$ -multiplication on A) such that
	- \bullet (A, \otimes) is a semigroup;
	- $a\otimes(\bigsqcup\alpha)=\bigsqcup(a\otimes\cdot)^{\rightarrow}_{Q}(\alpha)$ and $(\bigsqcup\alpha)\otimes a=\bigsqcup(\cdot\otimes a)_{Q}^{\rightarrow}(\alpha)$ for every $a \in A$, $\alpha \in Q^A$.
- A Q-quantale homomorphism $(A,e,\bigsqcup,\otimes)\stackrel{\varphi}{\to}(B,e,\bigsqcup,\otimes)$ is a Q- $\sqrt{\ }$ -semilattice homomorphism $A \stackrel{\varphi}{\rightarrow} B$ preserving \otimes .
- **Quant**(Q) is the category of Q-quantales.

Quantale algebras as lattice-valued quantales

Theorem 15

Let Q *be a unital quantale.*

- **1** There is a functor Q- $\mathsf{Alg} \stackrel{F}{\rightarrow} \mathsf{Quant}(Q)$, $F(A, \otimes, *) =$ $(\mathsf{A}, \mathsf{e}, \bigsqcup, \otimes)$, $\mathsf{F} \varphi = \varphi$, where e and \bigsqcup are from Theorem [13.](#page-25-1)
- **2** There is a functor $\textbf{Quant}(Q) \stackrel{G}{\rightarrow} Q\textbf{-Alg}$, $G(A, e, \bigsqcup, \otimes) = 0$ $(A, \leq, \vee, *, \otimes)$, $G\varphi = \varphi$, where $\leq, \vee, *$ are from Theorem [13.](#page-25-1)
- ³ G F = 1Q*-***Alg** *and* F G = 1**Quant**(Q) *, i.e., the categories* Q*-***Alg** *and* **Quant**(Q) *are isomorphic.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 18/23

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories $(Q \downarrow \textbf{UQuant})_z$, Q -UAlg, *and* **UQuant**(Q) *are isomorphic.*

Given a unital quantale Q*, the category* (Q ↓ **UQuant**)^z *is isomorphic to a subcategory of* **Quant**(Q)*.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 19/23

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories $(Q \downarrow \textbf{UQuant})_z$, Q -UAlg, *and* **UQuant**(Q) *are isomorphic.*

Corollary 17

Given a unital quantale Q, the category $(Q \downarrow \mathbf{UQuant})_z$ *is isomorphic to a subcategory of* **Quant** (Q) *.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 19/23

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- **Given a frame L, L-UAlg**_{Erm} is the full subcategory of L-UAlg, whose objects have frames as their underlying quantales.
- **Frm**(L) is the image of the subcategory L-**UAlg**_{Frm} under the isomorphism L-**UAlg** \xrightarrow{F} **UQuant**(L).

Frm(L) is isomorphic to the category of L-frames of W. Yao.

For a frame L*, the categories* (L ↓ **Frm**) *and* **Frm**(L) *are isomorphic.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 20/23

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- **Given a frame L, L-UAlg**_{Frm} is the full subcategory of L-UAlg, whose objects have frames as their underlying quantales.
- **Frm**(L) is the image of the subcategory L-**UAlg**_{Frm} under the isomorphism L-**UAlg** \xrightarrow{F} **UQuant**(L).

Frm(L) is isomorphic to the category of L-frames of W. Yao.

For a frame L*, the categories* (L ↓ **Frm**) *and* **Frm**(L) *are isomorphic.*

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 20/23

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

- **•** Given a frame L, L-**UAlg**_{Frm} is the full subcategory of L-**UAlg**, whose objects have frames as their underlying quantales.
- **Frm**(L) is the image of the subcategory L-**UAlg**_{Frm} under the isomorphism L-**UAlg** \xrightarrow{F} **UQuant**(L).
- **Frm**(L) is isomorphic to the category of L-frames of W. Yao.

Corollary₁₉

For a frame L*, the categories* (L ↓ **Frm**) *and* **Frm**(L) *are isomorphic.*

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(Q) and **Quant**(Q) (fuzzy notion) have the properties of the categories Q-**Mod** and Q-**Alg** (crisp notion).

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(Q) and **Quant**(Q) (fuzzy notion) have the properties of the categories Q-**Mod** and Q-**Alg** (crisp notion).

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(Q) and **Quant**(Q) (fuzzy notion) have the properties of the categories Q-**Mod** and Q-**Alg** (crisp notion).

- Quantale algebras (motivated by algebras over a not necessarily commutative unital ring) provide a common framework for two notions of lattice-valued frame.
- Fuzzification of the sobriety-spatiality equivalence can be done easier in the setting of quantale algebras.
- Quantale algebras provide a convenient fuzzification of locales.
- Categories **Sup**(Q) and **Quant**(Q) (fuzzy notion) have the properties of the categories Q-**Mod** and Q-**Alg** (crisp notion).

- 量 D. Kruml, J. Paseka, Algebraic and Categorical Aspects of Quantales, in: Handbook of Algebra, vol. 5, Elsevier, 2008, pp. 323–362.
- 晶 A. Pultr, S. E. Rodabaugh, Lattice-Valued Frames, Functor Categories, and Classes of Sober Spaces, in: Topological and Algebraic Structures in Fuzzy Sets, Kluwer Acad. Publ. 2003, pp. 153–187.
- W. Yao, An approach to fuzzy frames via fuzzy posets, Fuzzy Sets Syst. 166 (1) (2011) 75–89.
- F. D. Zhang, Y.-M. Liu, L-fuzzy version of Stone's representation theorem for distributive lattices, Fuzzy Sets Syst. 76 (2) (1995) 259–270.

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Soloviovs Brno University of Technology 22/23

Thank you for your attention!

[Lattice-valued frames as quantale algebras](#page-0-0) Sergejs Solovjovs Brno University of Technology 23/23