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Lattice-valued frames

Origins of lattice-valued frames

Equivalence of the categories of sober topological spaces (point-
set topology) and spatial locales (point-free topology) disclosed
a relationship between general topology and universal algebra.

The concept of fuzzy topological space inspired researchers to
provide a fuzzy analogue of the sobriety-spatiality equivalence.

Lattice-valued point-free topology needed a lattice-valued ana-
logue of locales different from that of lattice-valued algebra.
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Lattice-valued frames

Existing concepts of lattice-valued frame

D. Zhang, Y.-M. Liu (1995): L-fuzzy frames are objects of the com-

ma category (L ↓ Frm), i.e., frame homomorphisms L
iA−→ A.

A. Pultr, S. E. Rodabaugh (2003): lattice-valued frames are fami-
lies of frame homomorphisms (A1

ϕt−→A2)t∈T with some properties.

W. Yao (2011): L-frames are based in the notion of L-partially or-
dered set; L-frames and L-fuzzy frames are categorically equivalent.

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 5/23
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Contribution of this talk

Quantale algebras as lattice-valued frames

Quantale algebras are motivated by algebras over a not neces-
sarily commutative unital ring.

Quantale algebras (crisp concept) incorporate L-fuzzy frames of
D. Zhang, Y.-M. Liu and L-frames of W. Yao (fuzzy concept).

Quantale algebras provide a framework for developing fuzzy
analogues of the sobriety-spatiality equivalence.

Quantale algebras (crisp concept) facilitate the study of the
categories of different lattice-valued structures (fuzzy concept).

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 6/23
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Quantale modules and algebras

Quantales

Definition 1

A quantale is a triple (Q,
∨
,⊗) such that

(Q,
∨
) is a

∨
-semilattice;

(Q,⊗) is a semigroup;
q ⊗ (

∨
S) =

∨
s∈S(q ⊗ s) and (

∨
S) ⊗ q =

∨
s∈S(s ⊗ q) for

every q ∈ Q, S ⊆ Q.

A quantale homomorphism (P,
∨
,⊗) ϕ−→ (Q,

∨
,⊗) is a map

P
ϕ−→ Q which preserves

∨
and ⊗.

Quant is the category of quantales.
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Quantale modules and algebras

Unital quantales

Definition 2

A quantale Q is said to be unital provided that there exists an
element  ∈ Q such that (Q,⊗, ) is a monoid.

Unital quantale homomorphisms additionally preserve the unit.

UQuant is the subcategory of Quant of unital quantales.
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Quantale modules and algebras

Quantale modules

Definition 3

Given a unital quantale Q, a (unital left) Q-module is a pair
(A, ∗), where A is a

∨
-semilattice and Q × A

∗−→ A is a map
(the action of Q on A) such that

q ∗ (
∨
S) =

∨
s∈S(q ∗ s) for every q ∈ Q, S ⊆ A;

(
∨
S) ∗ a =

∨
s∈S(s ∗ a) for every S ⊆ Q, a ∈ A;

q1 ∗ (q2 ∗ a) = (q1 ⊗ q2) ∗ a for every q1, q2 ∈ Q, a ∈ A;
Q ∗ a = a for every a ∈ A.

A Q-module homomorphism (A, ∗) ϕ−→ (B, ∗) is a
∨

-preserving
map A

ϕ−→ B with ϕ(q ∗ a) = q ∗ ϕ(a) for every q ∈ Q, a ∈ A.

Q-Mod is the category of Q-modules.
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Quantale modules and algebras

Quantale algebras

Definition 4

For a unital quantale Q, a Q-algebra is a triple (A,⊗, ∗) where
(A, ∗) is a Q-module;
(A,⊗) is a quantale;
q ∗ (a1 ⊗ a2) = (q ∗ a1) ⊗ a2 = a1 ⊗ (q ∗ a2) for every q ∈ Q,
a1, a2 ∈ A.

A Q-algebra homomorphism (A,⊗, ∗) ϕ−→ (B,⊗, ∗) is a map
A

ϕ−→ B which is a homomorphism of quantales and Q-modules.

Q-Alg is the category of Q-algebras.
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Quantale algebras as comma categories

Preliminary definitions

Definition 5

Given a unital quantale Q, Q-UAlg is the subcategory of Q-Alg of
unital quantale algebras and unit-preserving homomorphisms.

Definition 6

Given a unital quantale Q, (Q ↓ UQuant)z is the category, whose

objects are UQuant-morphisms Q
iA−→ A having their range in the

center Z (A) := {a ∈ A | a⊗ a′ = a′ ⊗ a for every a′ ∈ A} of A;

morphisms (Q
iA−→ A)

ϕ−→ (Q
iB−→ B) are UQuant-morphisms

A
ϕ−→ B such that ϕ ◦ iA = iB .

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 11/23
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Quantale algebras as comma categories

Quantale algebras as comma categories

Theorem 7

Let Q be a unital quantale.

1 There is a functor Q-UAlg F−→ (Q ↓ UQuant)z , F (A, ∗) =

(Q
iA−→ A), Fϕ = ϕ, where iA(q) = q ∗ A.

2 There is a functor (Q ↓ UQuant)z
G−→ Q-UAlg, G (Q

iA−→ A) =
(A, ∗), Gϕ = ϕ, where q ∗ a = iA(q)⊗ a.

3 G ◦ F = 1Q-UAlg and F ◦ G = (Q ↓ UQuant)z , i.e., the
categories Q-UAlg and (Q ↓ UQuant)z are isomorphic.
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Quantale modules as lattice-valued join-semilattices

Preliminary definitions

Definition 8

Every quantale Q has a binary operation (i.e., residuation)
q1 −→l q2 =

∨
{q ∈ Q | q ⊗ q1 6 q2}.

Every Q-module (A, ∗) has a binary operation (i.e., residuation)
a1 � a2 =

∨
{q ∈ Q | q ∗ a1 6 a2}.

Definition 9

Given a map f :X −→Y and a
∨

-semilattice L, there is the forward L-
powerset operator f→L : LX −→LY , (f→L (α))(y)=

∨
{α(x) | f (x)=y}.

Definition 10

Given a
∨

-semilattice L and a set X , every S ⊆ X , a ∈ L have a
map αa

S : X −→ L with αa
S(x) = a for x ∈ S ; otherwise, αa

S(x) = ⊥.

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 13/23
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Quantale modules as lattice-valued join-semilattices

Lattice-valued
∨

-semilattices

Definition 11

Given a unital quantale Q, a Q-
∨

-semilattice is a triple
(A, e,

⊔
), where A× A

e−→ Q is a map (Q-partial order) with
Q 6 e(a, a) for every a ∈ A;
e(a2, a3)⊗ e(a1, a2) 6 e(a1, a3) for every a1, a2, a3 ∈ A;
Q6e(a1, a2), Q6e(a2, a1) imply a1=a2, for every a1, a2 ∈ A;

and QA
⊔
−→ A is another map (Q-join operation) with

e(
⊔
α, a) =

∧
a′∈A(α(a

′) −→l e(a
′, a)) for every α ∈ QA, a ∈ A.

A Q-
∨

-semilattice homomorphism (A, e,
⊔
)

ϕ−→ (B, e,
⊔
) is a

map A
ϕ−→ B such that ϕ(

⊔
α) =

⊔
ϕ→Q (α) for every α ∈ QA.

Sup(Q) is the category of Q-
∨

-semilattices.

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 14/23
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Quantale modules as lattice-valued join-semilattices

Example of lattice-valued
∨

-semilattices

Lemma 12

Every unital quantale Q provides a Q-
∨

-semilattice (Q, e,
⊔
), where

the maps e and
⊔

are defined by

e(q1, q2) = q1 −→l q2 for every q1, q2 ∈ Q;⊔
α =

∨
q∈Q(α(q)⊗ q) for every α ∈ QQ .

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 15/23
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Quantale modules as lattice-valued join-semilattices

Quantale modules as lattice-valued
∨

-semilattices

Theorem 13

Let Q be a unital quantale.

1 There exists a functor Q-Mod F−→ Sup(Q), F (A, ∗) =
(A, e,

⊔
), Fϕ = ϕ, where

e(a1, a2) = a1 � a2;⊔
α =

∨
a∈A(α(a) ∗ a).

2 There exists a functor Sup(Q)
G−→ Q-Mod, G (A, e,

⊔
) =

(A,6,
∨
, ∗), Gϕ = ϕ, where

a1 6 a2 iff Q 6 e(a1, a2), for every a1, a2 ∈ A;∨
S =

⊔
α
Q

S for every S ⊆ A;
q ∗ a =

⊔
αq
{a} for every q ∈ Q, a ∈ A.

3 G ◦ F = 1Q-Mod and F ◦ G = 1Sup(Q), i.e., the categories
Q-Mod and Sup(Q) are isomorphic.
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Quantale algebras as lattice-valued quantales

Lattice-valued quantales

Definition 14

Given a unital quantale Q, a Q-quantale is a tuple (A, e,
⊔
,⊗),

in which (A, e,
⊔
) is a Q-

∨
-semilattice, and A × A

⊗−→ A is a
map (Q-multiplication on A) such that

(A,⊗) is a semigroup;
a ⊗ (

⊔
α) =

⊔
(a ⊗ ·)→Q (α) and (

⊔
α)⊗ a =

⊔
(· ⊗ a)→Q (α) for

every a ∈ A, α ∈ QA.

A Q-quantale homomorphism (A, e,
⊔
,⊗) ϕ−→ (B, e,

⊔
,⊗) is a

Q-
∨

-semilattice homomorphism A
ϕ−→ B preserving ⊗.

Quant(Q) is the category of Q-quantales.
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Quantale algebras as lattice-valued quantales

Quantale algebras as lattice-valued quantales

Theorem 15

Let Q be a unital quantale.

1 There is a functor Q-Alg F−→ Quant(Q), F (A,⊗, ∗) =
(A, e,

⊔
,⊗), Fϕ = ϕ, where e and

⊔
are from Theorem 13.

2 There is a functor Quant(Q)
G−→ Q-Alg, G (A, e,

⊔
,⊗) =

(A,6,
∨
, ∗,⊗), Gϕ = ϕ, where 6,

∨
, ∗ are from Theorem 13.

3 G ◦ F = 1Q-Alg and F ◦ G = 1Quant(Q), i.e., the categories
Q-Alg and Quant(Q) are isomorphic.
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Quantale algebras as lattice-valued frames

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories (Q ↓ UQuant)z , Q-UAlg,
and UQuant(Q) are isomorphic.

Corollary 17

Given a unital quantale Q, the category (Q ↓ UQuant)z is isomor-
phic to a subcategory of Quant(Q).

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 19/23



Introduction Quantale algebras Comma categories Lattice-valued quantales Conclusion References

Quantale algebras as lattice-valued frames

Lattice-valued quantales versus comma categories

Theorem 16

Given a unital quantale Q, the categories (Q ↓ UQuant)z , Q-UAlg,
and UQuant(Q) are isomorphic.

Corollary 17

Given a unital quantale Q, the category (Q ↓ UQuant)z is isomor-
phic to a subcategory of Quant(Q).

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 19/23



Introduction Quantale algebras Comma categories Lattice-valued quantales Conclusion References

Quantale algebras as lattice-valued frames

Lattice-valued frames of D. Zhang, Y.-M. Liu and W. Yao

Definition 18

Given a frame L, L-UAlgFrm is the full subcategory of L-UAlg,
whose objects have frames as their underlying quantales.

Frm(L) is the image of the subcategory L-UAlgFrm under the

isomorphism L-UAlg F−→ UQuant(L).

Frm(L) is isomorphic to the category of L-frames of W. Yao.

Corollary 19

For a frame L, the categories (L ↓ Frm) and Frm(L) are isomorphic.

Lattice-valued frames as quantale algebras Sergejs Solovjovs Brno University of Technology 20/23
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Conclusion

Final remarks

Quantale algebras (motivated by algebras over a not necessarily
commutative unital ring) provide a common framework for two
notions of lattice-valued frame.

Fuzzification of the sobriety-spatiality equivalence can be done
easier in the setting of quantale algebras.

Quantale algebras provide a convenient fuzzification of locales.

Categories Sup(Q) and Quant(Q) (fuzzy notion) have the
properties of the categories Q-Mod and Q-Alg (crisp notion).
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Thank you for your attention!
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