
Keimel’s Problem and threshold convexity

Jonathan D.H. Smith

Iowa State University

(Joint work with Anna B. Romanowska)

email: jdhsmith@iastate.edu

http://orion.math.iastate.edu/jdhsmith/homepage.html



Gene expression

Protein X ACTIVATES production of protein Y



Gene expression

Protein X ACTIVATES production of protein Y

D
N
A

———– promotor region ———–

encoding region for protein YRNAp binding siteX binding site



Gene expression

Protein X ACTIVATES production of protein Y

D
N
A

———– promotor region ———–

encoding region for protein YRNAp binding siteX binding site

6

transcription

messenger RNA (mRNA)



Gene expression

Protein X ACTIVATES production of protein Y

D
N
A

———– promotor region ———–

encoding region for protein YRNAp binding siteX binding site

6

transcription

messenger RNA (mRNA)

6
translation

protein Y



Gene expression

Protein X ACTIVATES production of protein Y

D
N
A

———– promotor region ———–

encoding region for protein YRNAp binding siteX binding site

'

&

$

%
RNA polymerase

(RNAp)
| | |

6

transcription

messenger RNA (mRNA)

6
translation

protein Y



Gene expression

Protein X ACTIVATES production of protein Y

D
N
A

———– promotor region ———–

encoding region for protein YRNAp binding siteX binding site

'

&

$

%
activated

protein X
| |

'

&

$

%
RNA polymerase

(RNAp)
| | |

6

transcription

messenger RNA (mRNA)

6
translation

protein Y



Transcription rate vs. activator X

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Relative concentration x/k of activator X

T
ra

n
s
c
ri
p
ti
o
n
 r

a
te



Experimental “and” gate



Fuzzy “and” gate

v0 v01v1

[
1+

(
k
x

)n ]−1 [
1+

(
l
y

)n ]−1

0
0.5

1
1.5

2

0
0.5

1
1.5

2
0

0.2

0.4

0.6

0.8

1

x/ky/l



Operations in fields

.

.

.

.

.

.

.

.

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.
.
.

.

.

.

.

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

.

.

.

.

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

Implication: p → q =

1 if p = 0;

q/p otherwise
.

.

.

.

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

Implication: p → q =

1 if p = 0;

q/p otherwise
.

.
Remark: For GF(2) = {0,1}, .

.

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

Implication: p → q =

1 if p = 0;

q/p otherwise
.

.
Remark: For GF(2) = {0,1}, .
complementation, implication are Boolean, .

.

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

Implication: p → q =

1 if p = 0;

q/p otherwise
.

.
Remark: For GF(2) = {0,1}, .
complementation, implication are Boolean, .
and dual multiplication is just union (de Morgan!). .

.

.

.



Operations in fields

Complementation: p′ = 1− p .
.

Dual multiplication: p ◦ q = (p′q′)′ .
.

Implication: p → q =

1 if p = 0;

q/p otherwise
.

.
Remark: For GF(2) = {0,1}, .
complementation, implication are Boolean, .
and dual multiplication is just union (de Morgan!). .

.
Remark: The open real unit interval .

I◦ =]0,1[= {p ∈ R | 0 ≤ p ≤ 1} .
is closed under these three operations.
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]
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[
yz(p ◦ q → q)

]
p ◦ q . .

.

.
Example: Semilattices (S, ·), with xyp = x · y. .

.
Example: Convex sets (C, I◦), with xyp = x(1− p) + yp.
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.

∀ p, q ∈ I◦ , ∀ u, v, w, x ∈ A ,
(
(uv)p (wx)p

)
q =

(
(uw)q (vx)q

)
p . .

.
Problem: In the axiomatization of barycentric algebras, .
can the skew-associativity be replaced by entropicity? .

.
Remark: Recall the mode property: idempotence and entropicity, .
equivalent to the property of all polynomials being homomorphisms. .
Thus a positive answer would axiomatize barycentric algebras .
as skew-commutative modes of type I◦ × {2}.
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Choose a threshold 0 ≤ t ≤ 1
2. .

.
For elements x, y of a convex set C, .
define the threshold-convex combinations .

.

xy r =


x if r < t (r small);

x(1− r) + yr if t ≤ r ≤ 1− t (r moderate);

y if r > 1− t (r large)

.

.
for r ∈ I◦. .

.
Say r is extreme if it’s small or large. .

.
Note that both idempotence and skew-commutativity .
hold for the threshold-convex combinations.
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. . . is established by checking the different cases for p, q in .

∀ u, v, w, x ∈ A ,
(
(uv)p (wx)p

)
q =

(
(uw)q (vx)q

)
p . .

.
If both p and q are moderate, it’s just like barycentric algebras. .

.
If both p and q are small, it’s just like left-zero semigroups. .

.
If p is small and q is moderate, both sides are (uw)q. .

.
If p is small and q is large, the left side is (uw)q = w, .
and the right side is (wx)p = w.
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Closed real unit interval (I, I◦) with threshold t = 1/2. .
.

Break the skew-associativity: ∀ p, q ∈ I◦ , ∀ x, y, z ∈ A , .[
xyp

]
zq = x

[
yz(p ◦ q → q)

]
p ◦ q . .

.
For p = q = 1/2, have p ◦ q = 3/4 .
and p ◦ q → q = 3/4 → 1/2 = (1/2)/(3/4) = 2/3. .

.
Then for x = y = 0 and z = 1, .

.

have
[
xyp

]
zq =

[
001/2

]
11/2 = 1/2, .

.

but x
[
yz(p ◦ q → q)

]
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[
012/3

]
3/4 = 1.
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Threshold barycentric algebras

For a threshold 0 ≤ t ≤ 1
2, the class Bt of .

.
threshold-t (barycentric) algebras .

.
is the variety generated by the class of convex sets .
equipped with the threshold-convex combinations. .

.

.
Remark: B0 is the class of (traditional) barycentric algebras. .

.

Theorem: B
1
2 is the class of commutative, .

idempotent, entropic magmas.
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Transcription rate vs. activator X: t = 0 and t = 1
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