Keimel's Problem and threshold convexity

Jonathan D.H. Smith Iowa State University (Joint work with Anna B. Romanowska) email: jdhsmith@iastate.edu http://orion.math.iastate.edu/jdhsmith/homepage.html

Protein X *ACTIVATES* production of protein Y

Protein X *ACTIVATES* production of protein Y

Protein X *ACTIVATES* production of protein Y

messenger RNA (mRNA)

✻ transcription

Protein X *ACTIVATES* production of protein Y

D N $A \frac{\frac{1}{2} \frac{1}{2} \frac{1}{2}$ X binding site $\;\;\;$ RNAp binding site $\;\;\;\;\;\;$ encoding region for protein Y ✻ transcription messenger RNA (mRNA) ✻ translation protein Y

Protein X *ACTIVATES* production of protein Y

Protein X *ACTIVATES* production of protein Y

Transcription rate vs. activator X

Experimental "and" gate

Fuzzy "and" gate

$$
v_0 v_{01} v_1 \left[1 + \left(\frac{k}{x}\right)^n \right]^{-1} \left[1 + \left(\frac{l}{y}\right)^n \right]^{-1}
$$

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Implication:
$$
p \rightarrow q = \begin{cases} 1 & \text{if } p = 0; \\ q/p & \text{otherwise} \end{cases}
$$

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Implication:
$$
p \rightarrow q = \begin{cases} 1 & \text{if } p = 0; \\ q/p & \text{otherwise} \end{cases}
$$

Remark: For $GF(2) = \{0, 1\}$,

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Implication:
$$
p \rightarrow q = \begin{cases} 1 & \text{if } p = 0; \\ q/p & \text{otherwise} \end{cases}
$$

Remark: For $GF(2) = \{0, 1\}$, complementation, implication are Boolean, .

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Implication:
$$
p \rightarrow q = \begin{cases} 1 & \text{if } p = 0; \\ q/p & \text{otherwise} \end{cases}
$$

Remark: For $GF(2) = \{0, 1\}$, complementation, implication are Boolean, and dual multiplication is just union (de Morgan!).

Complementation: $p' = 1 - p$ *′* = 1 *− p* .

Dual multiplication: $p \circ q = (p'q')'$

Implication:
$$
p \rightarrow q = \begin{cases} 1 & \text{if } p = 0; \\ q/p & \text{otherwise} \end{cases}
$$

Remark: For $GF(2) = \{0, 1\}$, complementation, implication are Boolean, . and dual multiplication is just union (de Morgan!).

Remark: The open real unit interval $I^{\circ} =]0, 1[= \{p \in \mathbb{R} \mid 0 \leq p \leq 1\}$ is closed under these three operations.

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: .

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: . **idempotence:** $\forall p \in I^{\circ}, \forall x \in A, xxp = x$;

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: . **idempotence:** $\forall p \in I^{\circ}, \forall x \in A, xxp = x$;

 $\mathbf{skew\text{-}commutativity:} \ \ \forall \ \ p \in I^{\circ} \, , \ \ \forall \ \ x,y \in A \, , \ \ xy \, p = y x \, p'$;
,

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: . **idempotence:** $\forall p \in I^{\circ}, \forall x \in A, xxp = x$; $\mathbf{skew\text{-}commutativity:} \ \ \forall \ \ p \in I^{\circ} \, , \ \ \forall \ \ x,y \in A \, , \ \ xy \, p = y x \, p'$; and ... $\mathbf{skew}\text{-}\mathbf{associativity:}\;\;\forall\;\,p,q\in I^\circ$ $y, \forall x, y, z \in A,$ $\left[xyp \right] zq = x \left[yz(p \circ q \rightarrow q) \right]$ $p \circ q$.

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: . **idempotence:** $\forall p \in I^{\circ}, \forall x \in A, xxp = x$; $\mathbf{skew\text{-}commutativity:} \ \ \forall \ \ p \in I^{\circ} \, , \ \ \forall \ \ x,y \in A \, , \ \ xy \, p = y x \, p'$; and ... $\mathbf{skew}\text{-}\mathbf{associativity:}\;\;\forall\;\,p,q\in I^\circ$ $y, \forall x, y, z \in A,$ $\left[xyp \right] zq = x \left[yz(p \circ q \rightarrow q) \right]$ $p \circ q$.

Example: Semilattices (S, \cdot) , with $xyp = x \cdot y$.

 (A, \underline{I}°) , binary operation $xy p$ for each $p \in I^\circ$, satisfying: . **idempotence:** $\forall p \in I^{\circ}, \forall x \in A, xxp = x$; $\mathbf{skew\text{-}commutativity:} \ \ \forall \ \ p \in I^{\circ} \, , \ \ \forall \ \ x,y \in A \, , \ \ xy \, p = y x \, p'$; and ... $\mathbf{skew}\text{-}\mathbf{associativity:}\;\;\forall\;\,p,q\in I^\circ$ $y, \forall x, y, z \in A,$ $\left[xyp \right] zq = x \left[yz(p \circ q \rightarrow q) \right]$ $p \circ q$.

Example: Semilattices (S, \cdot) , with $xyp = x \cdot y$.

Example: Convex sets (C, \underline{I}°) , with $xyp = x(1 - p) + yp$.

Proposition: A barycentric algebra (*A, I◦*) . satisfies the **entropic** (hyper-)identity:

$$
\forall p, q \in I^{\circ}, \ \forall u, v, w, x \in A, \ \left((uv)\underline{p}(wx)\underline{p} \right) \underline{q} = \left((uw)\underline{q}(vx)\underline{q} \right) \underline{p}.
$$

Proposition: A barycentric algebra (*A, I◦*) . satisfies the **entropic** (hyper-)identity:

$$
\forall p, q \in I^{\circ}, \ \forall u, v, w, x \in A, \ \left((uv)\underline{p}(wx)\underline{p} \right) \underline{q} = \left((uw)\underline{q}(vx)\underline{q} \right) \underline{p}.
$$

Problem: In the axiomatization of barycentric algebras, can the skew-associativity be replaced by entropicity?

Proposition: A barycentric algebra (*A, I◦*) . satisfies the **entropic** (hyper-)identity:

$$
\forall p, q \in I^{\circ}, \ \forall u, v, w, x \in A, \ \left((uv)\underline{p}(wx)\underline{p} \right) \underline{q} = \left((uw)\underline{q}(vx)\underline{q} \right) \underline{p}.
$$

Problem: In the axiomatization of barycentric algebras, can the skew-associativity be replaced by entropicity?

Remark: Recall the **mode** property: idempotence and entropicity, equivalent to the property of all polynomials being homomorphisms. .

Proposition: A barycentric algebra (*A, I◦*) . satisfies the **entropic** (hyper-)identity:

$$
\forall p, q \in I^{\circ}, \ \forall u, v, w, x \in A, \ \left((uv)\underline{p}(wx)\underline{p} \right) \underline{q} = \left((uw)\underline{q}(vx)\underline{q} \right) \underline{p}.
$$

Problem: In the axiomatization of barycentric algebras, can the skew-associativity be replaced by entropicity?

Remark: Recall the **mode** property: idempotence and entropicity, equivalent to the property of all polynomials being homomorphisms. . Thus a positive answer would axiomatize barycentric algebras . as skew-commutative modes of type $I^{\circ} \times \{2\}$.

Choose a **threshold** $0 \le t \le \frac{1}{2}$. .

Choose a **threshold** $0 \le t \le \frac{1}{2}$. .

For elements x, y of a convex set C , define the **threshold-convex combinations** .

$$
xy \underline{r} = \begin{cases} x & \text{if } r < t \quad (r \text{ small}); \\ x(1-r) + yr & \text{if } t \le r \le 1-t \quad (r \text{ moderate}); \\ y & \text{if } r > 1-t \quad (r \text{ large}) \end{cases}
$$

for $r \in I^{\circ}$ *.* .

Choose a **threshold** $0 \le t \le \frac{1}{2}$. .

For elements x, y of a convex set C , define the **threshold-convex combinations** .

$$
xy \underline{r} = \begin{cases} x & \text{if } r < t \quad (r \text{ small}); \\ x(1-r) + yr & \text{if } t \le r \le 1-t \quad (r \text{ moderate}); \\ y & \text{if } r > 1-t \quad (r \text{ large}) \end{cases}
$$

for $r \in I^{\circ}$ *.* .

Say r is **extreme** if it's small or large.

Choose a **threshold** $0 \le t \le \frac{1}{2}$. .

For elements x, y of a convex set C , define the **threshold-convex combinations** .

$$
xy \underline{r} = \begin{cases} x & \text{if } r < t \quad (r \text{ small}); \\ x(1-r) + yr & \text{if } t \le r \le 1-t \quad (r \text{ moderate}); \\ y & \text{if } r > 1-t \quad (r \text{ large}) \end{cases}
$$

for $r \in I^{\circ}$ *.* .

Say r is **extreme** if it's small or large.

Note that both idempotence and skew-commutativity . hold for the threshold-convex combinations.

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

If both *p* and *q* are moderate, it's just like barycentric algebras.

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

If both *p* and *q* are moderate, it's just like barycentric algebras.

If both *p* and *q* are small, it's just like left-zero semigroups.

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

If both *p* and *q* are moderate, it's just like barycentric algebras. .

If both *p* and *q* are small, it's just like left-zero semigroups.

If *p* is small and *q* is moderate, both sides are (*uw*)*q*. .

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

If both *p* and *q* are moderate, it's just like barycentric algebras. .

If both *p* and *q* are small, it's just like left-zero semigroups. .

If *p* is small and *q* is moderate, both sides are (*uw*)*q*. .

If p is small and q is large, the left side is $(uw)q = w$,

 \ldots is established by checking the different cases for p, q in $\forall u, v, w, x \in A, ((uv)p(wx)p)q = ((uw)q(vx)q)$ *p .* .

If both *p* and *q* are moderate, it's just like barycentric algebras. .

If both *p* and *q* are small, it's just like left-zero semigroups. .

If *p* is small and *q* is moderate, both sides are (*uw*)*q*. .

If p is small and q is large, the left side is $(uw)q = w$, and the right side is $(wx)p = w$.

Closed real unit interval (I, \underline{I}°) with threshold $t = 1/2$.

Closed real unit interval (I, \underline{I}°) with threshold $t = 1/2$.

Break the skew-associativity:

\n
$$
\forall p, q \in I^{\circ}, \forall x, y, z \in A,
$$
\n
$$
\bigl[xy\underline{p}\bigr]z\underline{q} = x\bigl[yz(\underline{p\circ q \to q})\bigr]\underline{p\circ q}.
$$

Closed real unit interval (I, \underline{I}°) with threshold $t = 1/2$.

Break the skew-associativity: $\forall p, q \in I^{\circ}, \forall x, y, z \in A$, $\left[xyp \right] zq = x \left[yz(p \circ q \to q) \right]$ $p \circ q$.

For $p = q = 1/2$, have $p \circ q = 3/4$

Closed real unit interval (I, I°) with threshold $t = 1/2$.

Break the skew-associativity: $\forall p, q \in I^{\circ}$ $y, \forall x, y, z \in A,$ $\left[xyp \right] zq = x \left[yz(p \circ q \to q) \right]$ $p \circ q$.

For $p = q = 1/2$, have $p \circ q = 3/4$ and $p \circ q \to q = 3/4 \to 1/2 = (1/2)/(3/4) = 2/3$.

Closed real unit interval (I, \underline{I}°) with threshold $t = 1/2$.

Break the skew-associativity: $\forall p, q \in I^{\circ}$ $y, \forall x, y, z \in A,$ $\left[xyp \right] zq = x \left[yz(p \circ q \to q) \right]$ $p \circ q$.

For $p = q = 1/2$, have $p \circ q = 3/4$ and $p \circ q \to q = 3/4 \to 1/2 = (1/2)/(3/4) = 2/3$.

Then for $x=y=0$ and $z=1$,

Closed real unit interval (I, I°) with threshold $t = 1/2$.

Break the skew-associativity: $\forall p, q \in I^{\circ}, \forall x, y, z \in A$, $\left[xyp \right] zq = x \left[yz(p \circ q \to q) \right]$ $p \circ q$.

For $p = q = 1/2$, have $p \circ q = 3/4$ and $p \circ q \to q = 3/4 \to 1/2 = (1/2)/(3/4) = 2/3$.

Then for $x=y=0$ and $z=1$,

have $[xyp]zq = [001/2]$ $11/2 = 1/2$,

Closed real unit interval (I, \underline{I}°) with threshold $t = 1/2$.

Break the skew-associativity: $\forall p, q \in I^{\circ}, \forall x, y, z \in A$, $\left[xyp \right] zq = x \left[yz(p \circ q \to q) \right]$ $p \circ q$.

For
$$
p = q = 1/2
$$
, have $p \circ q = 3/4$
and $p \circ q \to q = 3/4 \to 1/2 = (1/2)/(3/4) = 2/3$.

Then for $x = y = 0$ and $z = 1$,

have
$$
\left[xy\underline{p}\right]z\underline{q} = \left[00\underline{1/2}\right]\underline{11/2} = 1/2,
$$

but
$$
x\left[yz(\underline{p\circ q\to q})\right]\underline{p\circ q} = 0\left[01\underline{2/3}\right]\underline{3/4} = 1.
$$

For a threshold $0 \le t \le \frac{1}{2}$, the class $\underline{\underline{B}}^t$ of

threshold-*t* (**barycentric**) **algebras** .

is the variety generated by the class of convex sets equipped with the threshold-convex combinations. .

For a threshold $0 \le t \le \frac{1}{2}$, the class $\underline{\underline{B}}^t$ of

threshold-*t* (**barycentric**) **algebras** .

is the variety generated by the class of convex sets. equipped with the threshold-convex combinations. .

Remark: \underline{B}^0 is the class of (traditional) barycentric algebras.

For a threshold $0 \le t \le \frac{1}{2}$, the class $\underline{\underline{B}}^t$ of

threshold-*t* (**barycentric**) **algebras** .

is the variety generated by the class of convex sets. equipped with the threshold-convex combinations. .

Remark: \underline{B}^0 is the class of (traditional) barycentric algebras.

Theorem: *B* 1 $\bar{2}$ is the class of commutative, $\bar{2}$ is the class of commutative, idempotent, entropic magmas.

Transcription rate vs. activator X

Transcription rate vs. activator X: $t=0$ and $t=\frac{1}{2}$

Thank you for your attention!