LATTICES WITHOUT ABSORPTION

A. B. ROMANOWSKA Warsaw University of Technology Warsaw, Poland (joint work with John Harding New Mexico State University Las Cruces, New Mexico, USA)

BISEMILATTICES

A **bisemilattice** is an algebra $(B, \cdot, +)$ with two semilattice operations \cdot and +, the first interpreted as a meet and the second as a join.

A **Birkhoff system** is a bisemilattice satisfying a weakened version of the absorption law for lattices known as *Birkhoff's equation*:

$$x \cdot (x+y) = x + (x \cdot y).$$

Each bisemilattice induces two partial orderings on its underlying set:

> $x \leq y \text{ iff } x \cdot y = x,$ $x \leq y \text{ iff } x + y = y.$

EXAMPLES

Lattices: x + xy = x(x + y) = x, and $\leq \cdot = \leq_{+} \cdot$

(Stammered) semilattices: $x \cdot y = x + y$, and $\leq z \geq + z$.

Bichains: both meet and join reducts are chains, e.g. 2-element lattice 2_l , 2-element semilattice 2_s , and the four non-lattice and non-semilattice 3-element bichains:

W					J				
3_d		3	3_n		3_{i}		3_m		
1	2	1	3	1	2		1	1	
2	3	2	1	2	1		2	3	
3	1	3	2	3	3		3	2	

3

EXAMPLES, cont.

Meet-distributive Birkhoff systems: x(y+z) = xy + xz (MD), e.g. 3_m .

Join-distributive Birkhoff systems: x + yz = (x + y)(x + z) (JD), e.g. 3_j .

Distributive Birkhoff systems: satisfy both (MD) and (JD), e.g. $\mathbf{3}_d$.

Quasilattices:

(x + y)z + yz = (x + y)z (mQ), (xy + z)(y + z) = xy + z (jQ),or equivalently: $x + y = x \Rightarrow (xz) + (yz) = xz,$ $xy = x \Rightarrow (x + z)(y + z) = x + z.$

SEMILATTICE SUMS

Each Birkhoff system A has a homomorphism onto a semilattice.

The greatest semilattice homomorphic image S = h(A) of A is called the **semilattice replica** of A.

Its kernel kerh is called the **semilattice (replica) congruence** of A.

If the blocks of ker*h* are all lattices A_s , with $s \in S$, then *A* is said to be **the semilattice** sum of lattices A_s and is denoted $\bigsqcup_{s \in S} A_s$.

PŁONKA SUMS

The semilattice sum $\bigsqcup_{s \in S} A_s$ of lattices A_s is **functorial**, if there is a functor

$$F: S \to L; (s \to t) \mapsto (\varphi_{s,t}: A_s \to A_t)$$

from the category S to the category L of lattices, assigning to each morphism $s \to t$ of S a homomorphism $\varphi_{s,t} : A_s \to A_t$ of lattices.

The functorial sum $\bigsqcup_{s \in S} A_s$ becomes the **Płonka** sum (of lattices A_s over the semilattice S by the functor F),

by defining, for $a_s \in A_s, b_t \in A_t$, their join and meet as follows:

$$a_{s} + b_{t} = a_{s}\varphi_{s,s+t} + b_{t}\varphi_{t,s+t},$$
$$a_{s} \cdot b_{t} = a_{s}\varphi_{s,s+t} \cdot b_{t}\varphi_{t,s+t}.$$

The Płonka sum of Birkhoff systems is a Birkhoff system.

REGULARIZATION and ...

An equation p = q is **regular** if the same variables appear on each side.

A variety is **regular** if all equations valid in it are regular.

Proposition A variety of Birkhoff systems is irregular precisely, if it is a variety of lattices. The variety of semilattices is the smallest regular variety.

For each irregular variety V of Birkhoff systems, there is a smallest regular variety \tilde{V} containing V, called the **regularization** of V. It is defined by all regular equations that are valid in V.

The regularization \widetilde{V} consists precisely of Płonka sums of bisemilattices in V.

...quasilattices

Theorem (Padmanabhan) Each variety of quasilattices is the regularization of a variety of lattices, and consists precisely of Płonka sums of lattices in this variety.

Corollary (Płonka) The regularization $\widetilde{\text{DL}}$ of the variety DL of distributive lattices consists of Płonka sums of distributive lattices, and is generated by the distributive 3-element bichain $\mathbf{3}_d$.

Theorem(Dudek, Graczyńska) For a variety V of lattices, the lattice $\mathcal{L}(\tilde{V})$ of subvarieties of its regularization \tilde{V} is isomorphic to the direct product $\mathcal{L}(V) \times 2$ of the lattice of subvarieties of V and the 2-element lattice 2.

VARIETIES GENERATED BY 3-ELEMENT BICHAINS

For Birkhoff systems A_1, \ldots, A_n , let $V(A_1, \ldots, A_n)$ denote the variety of Birkhoff systems generated by A_1, \ldots, A_n .

SPLITTINGS

A pair (u, w) of elements of a complete lattice L is called a **splitting pair** or briefly a **splitting** of L, if L is the disjoint union $(u] \cup [w)$ of the set of elements that are underneath of u and the set of elements that are above of w.

Proposition(McKenzie, Jipsen-Rose) Let (U, W) be a splitting pair of subvarieties of V. Then there is a subdirectly irreducible algebra S in V that generates W. The variety U is the largest subvariety of V that does not contain S. It is defined by the equations satisfied in V and one additional equation.

The subdirectly irreducible algebra S is called a **splitting algebra** in V, the variety U is called the **splitting variety** of S, and the additional equation defining the splitting variety of S is called the **splitting equation** for S. An algebra P in a variety V is **weakly projective** in V if for any algebra $A \in V$ and any homomorphism $f : A \to P$ onto P there is a subalgebra B of A such that the restriction $f|_B : B \to P$ is an isomorphism.

For a variety V and an algebra S in V, define

$$\mathsf{V}_S = \{ A \in \mathsf{V} \mid S \nleq A \}.$$

Proposition(Jipsen-Rose) Let S be an algebra that is subdirectly irreducible and weakly projective in a variety V. Then S is a splitting algebra in V and $(V_S, V(S))$ is a splitting pair of subvarieties of V.

Theorem (Harding, C. Walker, E. Walker) A finite bichain is weakly projective in the variety BS if, and only if, it does not contain a subalgebra isomorphic to $\mathbf{3}_d$.

EXAMPLES OF SPILTTINGS

Proposition The splitting variety BS_{2_l} of 2_l is the variety SL of semilattices, and the splitting equation (S_{2_l}) is xy = x + y.

Proposition The splitting variety BS_{2_s} of 2_s is the variety L of lattices, and its splitting equation (S_{2_s}) is absorption, x + xy = x.

Proposition Each of the bichains 3_m , 3_j and 3_n is subdirectly irreducible and weakly projective. Their splitting equations are the following.

$$(z + xyz)(z + yz + xyz) = z + xyz, \quad (S_{3_m})$$

z(x+y+z) + z(y+z)(x+y+z) = z(x+y+z),(S_{3_i})

$$(z + xyz)(z + yz + xyz) = z + yz + xyz.$$
 (S_{3_n})

These equations define the varieties BS_{3_m} , BS_{3_j} and BS_{3_n} , respectively.

A STRUCTURE THEOREM

We give a structure theorem for the variety $V(S_{3_m}, S_{3_j})$ defined by S_{3_m} and S_{3_j} , and in particular for its subvariety $V(3_n)$.

The variety $V(S_{3_m}, S_{3_j})$ is defined by the splitting equations of the bichains 3_m and 3_j . Thus a Birkhoff system belongs to $V(S_{3_m}, S_{3_j})$ if, and only if, it contains no subalgebra isomorphic to either 3_m or 3_i .

Let A be a Birkhoff system. We say that a subset $S \subseteq A$ is a **sublattice** of A if S is a subalgebra of A that is a lattice. We say that Sis a **convex sublattice** of A if S is a sublattice of A and is convex in each semilattice reduct of A.

For a Birkhoff system A, define a binary relation θ on A by setting $a \theta b$ if a and b generate a sublattice of A.

Theorem If $A \in V(S_{3_m}, S_{3_j})$, then θ is a bisemilattice congruence of A, the equivalence classes of θ are convex sublattices, and the quotient A/θ is a semilattice.

In particular, the Birkhoff system A is a semilattice sum of lattices $A_s = a/\theta$ over the semilattice $S = A/\theta$.

Proposition In a semilattice sum $\bigsqcup_{s \in S} A_s$, the summands A_s are necessarily convex sublattices of A, and the congruence θ is unique.

Corollary A Birkhoff system A belongs to the variety $V(S_{3_m}, S_{3_j})$ if, and only if, it is a semilattice sum of lattices.

Corollary Each member of the variety $V(3_n)$ is a semilattice sum of distributive lattices.

MAL'CEV PRODUCT

Let V and W be two varieties of Birkhoff systems. Then the **Mal'cev product** $V \circ W$ of V and W consists of Birkhoff systems A with a congruence φ such that the quotient A/φ is in W, and each congruence class a/φ of A is in V.

Corollary The class of Birkhoff systems that are semilattice sums of lattices is the Mal'cev product $L \circ SL$ of the varieties L of lattices and SL of semilattices within the class of Birkhoff systems.

Corollary The following three classes of Birkhoff systems are equal:

(a) the variety $V(S_{3_m}, S_{3_j})$,

(b) the class of Birkhoff systems that are semilattice sums of lattices,

(c) the quasivariety $L \circ SL$.

Reconstruction

There is a general method of reconstructing a semilattice sum of lattices from the summands and the quotient, by means of so-called strict Lallement sums.

In the case of sums of bounded lattices, such sums have a more direct description.

Let $(S, +, \cdot)$, where $x + y = x \cdot y$, be a semilattice, and let A_s , for $s \in S$, be bounded lattices, where 0_s and 1_s are the bounds of A_s . For $s \cdot t = s + t = t$ in S, let the map

$$\varphi_{s,t}: (A_s, \cdot) \to (A_t, \cdot)$$

be a homomorphism of the meet-semilattice reduct, and the map

$$\psi_{s,t}: (A_s, +) \to (A_t, +)$$

be a homomorphism of the join semilattice reduct of A. Let $\varphi_{s,s}$ and $\psi_{s,s}$ be identity maps.

The strict Lallement sum of the lattices A_s over the semilattice S by the mappings $\varphi_{s,t}$ and $\psi_{s,t}$ is the disjoint union of the A_s (with $s \in S$) with operations \cdot and + defined for $a_s \in A_s$ and $a_t \in A_t$ by

$$a_s + b_t = a_s \varphi_{s,s+t} + b_t \varphi_{t,s+t},$$
$$a_s \cdot b_t = a_s \varphi_{s,s\cdot t} \cdot b_t \varphi_{t,s\cdot t}.$$

Theorem Let A be a Birkhoff system. Then A is a semilattice sum $\bigsqcup_{s \in S} A_s$ of bounded lattices A_s over a semilattice S if, and only if, it is a strict Lallement sum of the lattices A_s over the semilattice S given by the homomorphisms $\varphi_{s,t}$ and $\psi_{s,t}$ described above.

Corollary Each finite algebra in the variety $V(S_{3_m}, S_{3_j})$ is a strict Lallement sum of lattices, and each finite algebra in the variety $V(3_n)$ is a strict Lallement sum of distributive lattices.

Problem Is each semilattice sum of lattices embeddable into a semilattice sum of bounded lattices?