LATTICES WITHOUT ABSORPTION

A. B. ROMANOWSKA Warsaw University of Technology Warsaw, Poland (joint work with John Harding New Mexico State University Las Cruces, New Mexico, USA)

BISEMILATTICES

A **bisemilattice** is an algebra (*B, ·,* +) with two semilattice operations \cdot and $+$, the first interpreted as a meet and the second as a join.

A **Birkhoff system** is a bisemilattice satisfying a weakened version of the absorption law for lattices known as *Birkhoff's equation*:

$$
x \cdot (x + y) = x + (x \cdot y).
$$

Each bisemilattice induces two partial orderings on its underlying set:

> $x \leq y$ iff $x \cdot y = x$, $x \leq_+ y$ iff $x + y = y$.

EXAMPLES

Lattices: $x + xy = x(x + y) = x$, and *≤·*=*≤*⁺ .

(Stammered) semilattices: $x \cdot y = x + y$, and *≤·*=*≥*⁺ .

Bichains: both meet and join reducts are chains, e.g. 2-element lattice **2***^l* , 2-element semilattice **2***s*, and the four non-lattice and non-semilattice 3-element bichains:

3

EXAMPLES, cont.

Meet-distributive Birkhoff systems: $x(y+z) = xy + xz$ (MD), e.g. **3***m*.

Join-distributive Birkhoff systems: $x + yz = (x + y)(x + z)$ (JD), e.g. **3***^j* .

Distributive Birkhoff systems: satisfy both (MD) and (JD), e.g. **3***^d* .

Quasilattices:

 $(x + y)z + yz = (x + y)z$ (mQ), $(xy + z)(y + z) = xy + z$ (jQ), or equivalently: $x + y = x \Rightarrow (xz) + (yz) = xz,$ $xy = x \Rightarrow (x + z)(y + z) = x + z$.

SEMILATTICE SUMS

Each Birkhoff system *A* has a homomorphism onto a semilattice.

The greatest semilattice homomorphic image $S = h(A)$ of *A* is called the **semilattice replica** of *A*.

Its kernel ker*h* is called the **semilattice (replica) congruence** of *A*.

If the blocks of ker*h* are all lattices *As*, with *s ∈ S*, then *A* is said to be **the semilattice** $\textbf{sum of lattices } A_s$ and is denoted $\bigsqcup_{s \in S} A_s.$

PLONKA SUMS

The semilattice sum ⊔ *^s∈^S A^s* of lattices *A^s* is **functorial**, if there is a functor

$$
F: S \to \mathsf{L}; (s \to t) \mapsto (\varphi_{s,t}: A_s \to A_t)
$$

from the category *S* to the category L of lattices, assigning to each morphism $s \to t$ of S a homomorphism $\varphi_{s,t}: A_s \to A_t$ of lattices.

The functorial sum ⊔ *^s∈^S A^s* becomes the **P lonka sum** (of lattices *As* over the semilattice *S* by the functor *F*),

by defining, for $a_s \in A_s$, $b_t \in A_t$, their join and meet as follows:

$$
a_s + b_t = a_s \varphi_{s,s+t} + b_t \varphi_{t,s+t},
$$

$$
a_s \cdot b_t = a_s \varphi_{s,s+t} \cdot b_t \varphi_{t,s+t}.
$$

The Płonka sum of Birkhoff systems is a Birkhoff system.

REGULARIZATION and ...

An equation $p = q$ is **regular** if the same variables appear on each side.

A variety is **regular** if all equations valid in it are regular.

Proposition A variety of Birkhoff systems is irregular precisely, if it is a variety of lattices. The variety of semilattices is the smallest regular variety.

For each irregular variety V of Birkhoff systems, there is a smallest regular variety \widetilde{V} containing V, called the **regularization** of V. It is defined by all regular equations that are valid in V.

The regularization \tilde{V} consists precisely of P tonka sums of bisemilattices in V.

...quasilattices

Theorem (Padmanabhan) Each variety of quasilattices is the regularization of a variety of lattices, and consists precisely of Płonka sums of lattices in this variety.

Corollary (Płonka) The regularization DL of the variety DL of distributive lattices consists of Płonka sums of distributive lattices, and is generated by the distributive 3-element bichain **3***d* .

Theorem(Dudek, Graczyńska) For a variety V of lattices, the lattice $L(V)$ of subvarieties of its regularization \tilde{V} is isomorphic to the direct product $\mathcal{L}(V) \times 2$ of the lattice of subvarieties of V and the 2-element lattice 2.

VARIETIES GENERATED BY 3**-ELEMENT BICHAINS**

For Birkhoff systems A_1, \ldots, A_n , let $V(A_1, \ldots, A_n)$ denote the variety of Birkhoff systems generated by A_1, \ldots, A_n .

SPLITTINGS

A pair (*u, w*) of elements of a complete lattice *L* is called a **splitting pair** or briefly a **splitting** of *L*, if *L* is the disjoint union (*u*] *∪* [*w*) of the set of elements that are underneath of *u* and the set of elements that are above of *w*.

Proposition(McKenzie, Jipsen-Rose) Let (U*,* W) be a splitting pair of subvarieties of V. Then there is a subdirectly irreducible algebra *S* in V that generates W. The variety U is the largest subvariety of V that does not contain *S*. It is defined by the equations satisfied in V and one additional equation.

The subdirectly irreducible algebra *S* is called a **splitting algebra** in V, the variety U is called the **splitting variety** of *S*, and the additional equation defining the splitting variety of *S* is called the **splitting equation** for *S*.

An algebra *P* in a variety V is **weakly projective** in V if for any algebra $A \in V$ and any homomorphism $f : A \rightarrow P$ onto P there is a subalgebra *B* of *A* such that the restriction $f|_B : B \to P$ is an isomorphism.

For a variety V and an algebra *S* in V, define

$$
\mathsf{V}_S = \{ A \in \mathsf{V} \mid S \nleq A \}.
$$

Proposition(Jipsen-Rose) Let *S* be an algebra that is subdirectly irreducible and weakly projective in a variety V. Then *S* is a splitting algebra in V and $(V_S, V(S))$ is a splitting pair of subvarieties of V.

Theorem (Harding, C. Walker, E. Walker) A finite bichain is weakly projective in the variety BS if, and only if, it does not contain a subalgebra isomorphic to **3***^d* .

EXAMPLES OF SPILTTINGS

Proposition The splitting variety BS_{2_l} of 2_l is the variety SL of semilattices, and the splitting equation (S_{2_l}) is $xy = x + y$.

Proposition The splitting variety BS_{2^{*s*}} of 2^{*s*} is</sub> the variety L of lattices, and its splitting equation (S_{2_s}) is absorption, $x + xy = x$.

Proposition Each of the bichains **3***m*, **3***^j* and **3***n* is subdirectly irreducible and weakly projective. Their splitting equations are the following.

$$
(z+xyz)(z+yz+xyz) = z+xyz, \quad (\mathsf{S}_{3_m})
$$

 $z(x+y+z)+z(y+z)(x+y+z) = z(x+y+z),$ (S_{3_j})

$$
(z+xyz)(z+yz+xyz) = z+yz+xyz.
$$
 (S_{3_n})

These equations define the varieties BS**3***m*, BS**3***^j* and BS**3***ⁿ* , respectively.

A STRUCTURE THEOREM

We give a structure theorem for the variety $V(\mathsf{S}_{\mathbf{3}_m}, \mathsf{S}_{\mathbf{3}_j})$ defined by $\mathsf{S}_{\mathbf{3}_m}$ and $\mathsf{S}_{\mathbf{3}_j}$, and in particular for its subvariety $V(3_n)$.

The variety $V(\mathsf{S}_{\mathbf{3}_m}, \mathsf{S}_{\mathbf{3}_j})$ is defined by the splitting equations of the bichains $\mathbf{3}_m$ and $\mathbf{3}_j$. Thus a Birkhoff system belongs to *V* (S**3***m,* S**3***^j*) if, and only if, it contains no subalgebra isomorphic to either 3_m or 3_j .

Let *A* be a Birkhoff system. We say that a subset $S \subseteq A$ is a **sublattice** of A if S is a subalgebra of *A* that is a lattice. We say that *S* is a **convex sublattice** of *A* if *S* is a sublattice of *A* and is convex in each semilattice reduct of *A*.

For a Birkhoff system *A*, define a binary relation *θ* on *A* by setting *a θ b* if *a* and *b* generate a sublattice of *A*.

Theorem If $A \in V(\mathsf{S}_{\mathbf{3}_m}, \mathsf{S}_{\mathbf{3}_j})$, then θ is a bisemilattice congruence of *A*, the equivalence classes of *θ* are convex sublattices, and the quotient *A/θ* is a semilattice.

In particular, the Birkhoff system *A* is a semilattice sum of lattices $A_s = a/\theta$ over the semilattice $S = A/\theta$.

Proposition In a semilattice sum ⊔ *^s∈^S As*, the summands *As* are necessarily convex sublattices of A , and the congruence θ is unique.

Corollary A Birkhoff system *A* belongs to the variety $V(\mathsf{S}_{\mathbf{3}_m}, \mathsf{S}_{\mathbf{3}_j})$ if, and only if, it is a semilattice sum of lattices.

Corollary Each member of the variety $V(3_n)$ is a semilattice sum of distributive lattices.

MAL'CEV PRODUCT

Let V and W be two varieties of Birkhoff systems. Then the **Mal'cev product** V *◦* W of V and W consists of Birkhoff systems *A* with a congruence *φ* such that the quotient *A/φ* is in W, and each congruence class *a/φ* of *A* is in V.

Corollary The class of Birkhoff systems that are semilattice sums of lattices is the Mal'cev product L *◦* SL of the varieties L of lattices and SL of semilattices within the class of Birkhoff systems.

Corollary The following three classes of Birkhoff systems are equal:

(a) the variety $V(\mathsf{S}_{3_m}, \mathsf{S}_{3_j})$,

(b) the class of Birkhoff systems that are semilattice sums of lattices,

(c) the quasivariety L *◦* SL.

Reconstruction

There is a general method of reconstructing a semilattice sum of lattices from the summands and the quotient, by means of so-called strict Lallement sums.

In the case of sums of bounded lattices, such sums have a more direct description.

Let $(S, +, \cdot)$, where $x + y = x \cdot y$, be a semilattice, and let A_s , for $s \in S$, be bounded lattices, where 0*s* and 1*s* are the bounds of *As*. For $s \cdot t = s + t = t$ in *S*, let the map

$$
\varphi_{s,t}:(A_s,\cdot)\to(A_t,\cdot)
$$

be a homomorphism of the meet-semilattice reduct, and the map

$$
\psi_{s,t}:(A_s,+)\to (A_t,+)
$$

be a homomorphism of the join semilattice reduct of A. Let $\varphi_{s,s}$ and $\psi_{s,s}$ be identity maps.

The **strict Lallement sum** of the lattices *As* over the semilattice *S* by the mappings $\varphi_{s,t}$ and $\psi_{s,t}$ is the disjoint union of the A_s (with $s \in S$) with operations \cdot and $+$ defined for $a_s \in A_s$ and $a_t \in A_t$ by

$$
a_s + b_t = a_s \varphi_{s,s+t} + b_t \varphi_{t,s+t},
$$

$$
a_s \cdot b_t = a_s \varphi_{s,s \cdot t} \cdot b_t \varphi_{t,s \cdot t}.
$$

Theorem Let *A* be a Birkhoff system. Then *A* is a semilattice sum ⊔ *^s∈^S A^s* of bounded lattices *As* over a semilattice *S* if, and only if, it is a strict Lallement sum of the lattices *As* over the semilattice *S* given by the homomorphisms *φs,t* and *ψs,t* described above.

Corollary Each finite algebra in the variety $V(\mathsf{S}_{\mathbf{3}_m}, \mathsf{S}_{\mathbf{3}_j})$ is a strict Lallement sum of lattices, and each finite algebra in the variety $V(3_n)$ is a strict Lallement sum of distributive lattices.

Problem Is each semilattice sum of lattices embeddable into a semilattice sum of bounded lattices?