
LATTICES WITHOUT

ABSORPTION

A. B. ROMANOWSKA

Warsaw University of Technology

Warsaw, Poland

(joint work with John Harding

New Mexico State University

Las Cruces, New Mexico, USA)

1



BISEMILATTICES

A bisemilattice is an algebra (B, ·,+) with two

semilattice operations · and +, the first inter-

preted as a meet and the second as a join.

A Birkhoff system is a bisemilattice satisfying

a weakened version of the absorption law for

lattices known as Birkhoff’s equation:

x · (x+ y) = x+ (x · y).

Each bisemilattice induces two partial order-

ings on its underlying set:

x ≤· y iff x · y = x,

x ≤+ y iff x+ y = y.
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EXAMPLES

Lattices: x+ xy = x(x+ y) = x,

and ≤·=≤+ .

(Stammered) semilattices: x · y = x+ y,

and ≤·=≥+ .

Bichains: both meet and join reducts are chains,

e.g. 2-element lattice 2l,

2-element semilattice 2s,

and the four non-lattice and non-semilattice

3-element bichains:

3 1 3 2 3 3 3 2

2 3 2 1 2 1 2 3

1 2 1 3 1 2 1 1

3d 3n 3j 3m
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EXAMPLES, cont.

Meet-distributive Birkhoff systems:

x(y + z) = xy + xz (MD),

e.g. 3m.

Join-distributive Birkhoff systems:

x+ yz = (x+ y)(x+ z) (JD),

e.g. 3j.

Distributive Birkhoff systems:

satisfy both (MD) and (JD),

e.g. 3d.

Quasilattices:

(x+ y)z + yz = (x+ y)z (mQ),

(xy + z)(y + z) = xy + z (jQ),

or equivalently:

x+ y = x⇒ (xz) + (yz) = xz,

xy = x⇒ (x+ z)(y + z) = x+ z.
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SEMILATTICE SUMS

Each Birkhoff system A has a homomorphism

onto a semilattice.

The greatest semilattice homomorphic image

S = h(A) of A is called the semilattice replica

of A.

Its kernel kerh is called the semilattice (replica)

congruence of A.

If the blocks of kerh are all lattices As, with

s ∈ S, then A is said to be the semilattice

sum of lattices As and is denoted
⊔
s∈S As.
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P LONKA SUMS

The semilattice sum
⊔
s∈S As of lattices As is

functorial, if there is a functor

F : S → L; (s→ t) 7→ (φs,t : As → At)

from the category S to the category L of lat-

tices, assigning to each morphism s→ t of S a

homomorphism φs,t : As → At of lattices.

The functorial sum
⊔
s∈S As becomes the P lonka

sum (of lattices As over the semilattice S by

the functor F ),

by defining, for as ∈ As, bt ∈ At, their join and

meet as follows:

as + bt = asφs,s+t + btφt,s+t,

as · bt = asφs,s+t · btφt,s+t.

The P lonka sum of Birkhoff systems is a Birkhoff

system.
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REGULARIZATION and ...

An equation p = q is regular if the same vari-

ables appear on each side.

A variety is regular if all equations valid in it

are regular.

Proposition A variety of Birkhoff systems is

irregular precisely, if it is a variety of lattices.

The variety of semilattices is the smallest reg-

ular variety.

For each irregular variety V of Birkhoff sys-

tems, there is a smallest regular variety Ṽ con-

taining V, called the regularization of V. It is

defined by all regular equations that are valid

in V.

The regularization Ṽ consists precisely of P lonka

sums of bisemilattices in V.
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...quasilattices

Theorem (Padmanabhan) Each variety of quasi-

lattices is the regularization of a variety of lat-

tices, and consists precisely of P lonka sums of

lattices in this variety.

Corollary (P lonka) The regularization D̃L of

the variety DL of distributive lattices consists

of P lonka sums of distributive lattices, and is

generated by the distributive 3-element bichain

3d.

Theorem(Dudek, Graczyńska) For a variety V

of lattices, the lattice L(Ṽ) of subvarieties of

its regularization Ṽ is isomorphic to the direct

product L(V) × 2 of the lattice of subvarieties

of V and the 2-element lattice 2.
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VARIETIES GENERATED BY 3-ELEMENT

BICHAINS

For Birkhoff systems A1, . . . , An, let V (A1, . . . , An)

denote the variety of Birkhoff systems gener-

ated by A1, . . . , An.
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SPLITTINGS

A pair (u,w) of elements of a complete lattice

L is called a splitting pair or briefly a splitting

of L, if L is the disjoint union (u] ∪ [w) of the

set of elements that are underneath of u and

the set of elements that are above of w.

Proposition(McKenzie, Jipsen-Rose) Let (U,W)

be a splitting pair of subvarieties of V. Then

there is a subdirectly irreducible algebra S in V

that generates W. The variety U is the largest

subvariety of V that does not contain S. It is

defined by the equations satisfied in V and one

additional equation.

The subdirectly irreducible algebra S is called

a splitting algebra in V, the variety U is called

the splitting variety of S, and the additional

equation defining the splitting variety of S is

called the splitting equation for S.
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An algebra P in a variety V is weakly pro-

jective in V if for any algebra A ∈ V and any

homomorphism f : A → P onto P there is a

subalgebra B of A such that the restriction

f |B : B → P is an isomorphism.

For a variety V and an algebra S in V, define

VS = {A ∈ V | S � A}.

Proposition(Jipsen-Rose) Let S be an alge-

bra that is subdirectly irreducible and weakly

projective in a variety V. Then S is a splitting

algebra in V and (VS, V (S)) is a splitting pair

of subvarieties of V.

Theorem (Harding, C. Walker, E. Walker) A

finite bichain is weakly projective in the vari-

ety BS if, and only if, it does not contain a

subalgebra isomorphic to 3d.



EXAMPLES OF SPILTTINGS

Proposition The splitting variety BS2l of 2l is
the variety SL of semilattices, and the splitting
equation (S2l) is xy = x+ y.

Proposition The splitting variety BS2s of 2s is
the variety L of lattices, and its splitting equa-
tion (S2s) is absorption, x+ xy = x.

Proposition Each of the bichains 3m, 3j and
3n is subdirectly irreducible and weakly projec-
tive. Their splitting equations are the follow-
ing.

(z + xyz)(z + yz + xyz) = z + xyz, (S3m)

z(x+y+z) +z(y+z)(x+y+z) = z(x+y+z),
(S3j)

(z + xyz)(z + yz + xyz) = z + yz + xyz. (S3n)

These equations define the varieties BS3m, BS3j
and BS3n, respectively.
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A STRUCTURE THEOREM

We give a structure theorem for the variety
V (S3m,S3j) defined by S3m and S3j, and in par-
ticular for its subvariety V (3n).

The variety V (S3m,S3j) is defined by the split-
ting equations of the bichains 3m and 3j. Thus
a Birkhoff system belongs to V (S3m,S3j) if,
and only if, it contains no subalgebra isomor-
phic to either 3m or 3j.

Let A be a Birkhoff system. We say that a
subset S ⊆ A is a sublattice of A if S is a
subalgebra of A that is a lattice. We say that S
is a convex sublattice of A if S is a sublattice
of A and is convex in each semilattice reduct
of A.

For a Birkhoff system A, define a binary rela-
tion θ on A by setting a θ b if a and b generate
a sublattice of A.
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Theorem If A ∈ V (S3m,S3j), then θ is a bisemi-

lattice congruence of A, the equivalence classes

of θ are convex sublattices, and the quotient

A/θ is a semilattice.

In particular, the Birkhoff system A is a semi-

lattice sum of lattices As = a/θ over the semi-

lattice S = A/θ.

Proposition In a semilattice sum
⊔
s∈S As, the

summands As are necessarily convex sublat-

tices of A, and the congruence θ is unique.

Corollary A Birkhoff system A belongs to the

variety V (S3m,S3j) if, and only if, it is a semi-

lattice sum of lattices.

Corollary Each member of the variety V (3n)

is a semilattice sum of distributive lattices.



MAL’CEV PRODUCT

Let V and W be two varieties of Birkhoff sys-

tems. Then the Mal’cev product V ◦ W of V

and W consists of Birkhoff systems A with a

congruence φ such that the quotient A/φ is in

W, and each congruence class a/φ of A is in V.

Corollary The class of Birkhoff systems that

are semilattice sums of lattices is the Mal’cev

product L ◦ SL of the varieties L of lattices and

SL of semilattices within the class of Birkhoff

systems.

Corollary The following three classes of Birkhoff

systems are equal:

(a) the variety V (S3m,S3j),

(b) the class of Birkhoff systems that are semi-

lattice sums of lattices,

(c) the quasivariety L ◦ SL.
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Reconstruction

There is a general method of reconstructing a

semilattice sum of lattices from the summands

and the quotient, by means of so-called strict

Lallement sums.

In the case of sums of bounded lattices, such

sums have a more direct description.

Let (S,+, ·), where x+ y = x · y, be a semilat-

tice, and let As, for s ∈ S, be bounded lattices,

where 0s and 1s are the bounds of As.

For s · t = s+ t = t in S, let the map

φs,t : (As, ·) → (At, ·)

be a homomorphism of the meet-semilattice

reduct, and the map

ψs,t : (As,+) → (At,+)

be a homomorphism of the join semilattice

reduct of A. Let φs,s and ψs,s be identity maps.

14



The strict Lallement sum of the lattices As
over the semilattice S by the mappings φs,t and

ψs,t is the disjoint union of the As (with s ∈ S)

with operations · and + defined for as ∈ As and

at ∈ At by

as + bt = asφs,s+t + btφt,s+t,

as · bt = asφs,s·t · btφt,s·t.

Theorem Let A be a Birkhoff system. Then A

is a semilattice sum
⊔
s∈S As of bounded lattices

As over a semilattice S if, and only if, it is a

strict Lallement sum of the lattices As over the

semilattice S given by the homomorphisms φs,t
and ψs,t described above.

Corollary Each finite algebra in the variety

V (S3m,S3j) is a strict Lallement sum of lat-

tices, and each finite algebra in the variety

V (3n) is a strict Lallement sum of distributive

lattices.



Problem Is each semilattice sum of lattices

embeddable into a semilattice sum of bounded

lattices?


