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A crossed set is a quandle (X ,B) which further satisfies

x B y = y whenever y B x = x .

The inner group of a rack X is the group

Inn(X ) = 〈ϕx |x ∈ X 〉.

A rack X is called indecomposable or connected if Inn(X ) acts
transitively on X .
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Dihedral Quandle Dn on Zn with i B j = 2j − i (mod n).

Let A be an abelian group, α ∈ Aut(A) and 1 = idA. Then we
have a quandle structure on A, defined by:

x B y = (1 − α)(x) + α(y).

This quandle is known as affine quandle Aff(A, α).

Let G be a group, α ∈ Aut(G), and H be a subgroup of the
fixed points of α in G . Then for any g , f ∈ G , the quandle
structure on G/H is defined by:

gH B fH = gα(g−1f )H.

This quandle is known as coset quandle (G , H, α).
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By using this one can see that, any two permutations of a
finite connected rack X are mutually conjugate, and
hence have same pattern. Therefore, the profile of a finite
connected rack X is a constant sequence.

Hayashi called the pattern of any ϕx as the profile of a finite
connected rack X for short.
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Hayashi’s Conjecture

Let X be a finite connected quandle with

Profile(X ) = 1m0`m1
1 `m2

2 ...`mk

k .

Then `i |`k (i.e., `i divides `k) for any integer i with 1 ≤ i ≤ k − 1.

Example

Profile(SmallQuandle(42, 7)) = 12.22.34.64.
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For an affine quandle Aff(A, α) we have:

ϕx (y) = x B y = (1 − α)(x) + α(y).

If we take x = e, the identity of A, then ϕe(y) = α(y).
Hence, the cycle structure of ϕe is same as the cycle structure
of α ∈ Aut(A). Now, since an abelian group is nilpotent, the
automorphism α has a regular cycle.



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].
Therefore, Hayashi’s conjecture is true for connected quandles
of size p and p2.



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].
Therefore, Hayashi’s conjecture is true for connected quandles
of size p and p2.

A connected quandle of size p3 is either affine or isomorphic
to a coset quandle (G , H, α), where the group G has order p4

[by G. Bianco’s PhD thesis (2015)].



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].
Therefore, Hayashi’s conjecture is true for connected quandles
of size p and p2.

A connected quandle of size p3 is either affine or isomorphic
to a coset quandle (G , H, α), where the group G has order p4

[by G. Bianco’s PhD thesis (2015)]. Now, recall that for the
coset quandle (G , H, α):

gH B fH = gα(g−1f )H.

Therefore, ϕH(fH) = α(f )H.



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].
Therefore, Hayashi’s conjecture is true for connected quandles
of size p and p2.

A connected quandle of size p3 is either affine or isomorphic
to a coset quandle (G , H, α), where the group G has order p4

[by G. Bianco’s PhD thesis (2015)]. Now, recall that for the
coset quandle (G , H, α):

gH B fH = gα(g−1f )H.

Therefore, ϕH(fH) = α(f )H. Since a group of prime power
order is nilpotent, Hayashi’s conjecture is true for all
connected quandles of size p3.



Observations

Connected quandles of size p and p2 are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].
Therefore, Hayashi’s conjecture is true for connected quandles
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A connected quandle of size p3 is either affine or isomorphic
to a coset quandle (G , H, α), where the group G has order p4

[by G. Bianco’s PhD thesis (2015)]. Now, recall that for the
coset quandle (G , H, α):

gH B fH = gα(g−1f )H.

Therefore, ϕH(fH) = α(f )H. Since a group of prime power
order is nilpotent, Hayashi’s conjecture is true for all
connected quandles of size p3.

The results of A. Bors, S. Guest and P. Spiga can be used for
case-by-case analysis of some other known families of
connected quandles.
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Subracks of a Connected Rack

Let X be a finite connected rack. For any subset Y of X , the
subrack of X generated by Y is the smallest subrack of X

containing Y . For any subrack Y ⊆ X let Y c = X \ Y .

Lemma 1

Let Y be a subrack of X with Y 6= X . Then X is generated by Y c .

Proof.

Since Y is a subrack of X , we conclude that Y B Y c = Y c . Let

Z = {y1 B (y2 B ... B (yn−1 B yn)) | n ≥ 1, y1, ..., yn ∈ Y c}.

Then y B z ∈ Z for all y ∈ Y c , z ∈ Z by definition, and y B z ∈ Z

for all y ∈ Y by the self-distributivity of B and the Y -invariance of
Y c . Hence Z is a non-empty X -invariant subset of X , and
therefore equal to X since X is connected.
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Subracks of a Connected Rack

Lemma 2

Let X be a connected rack such that X = Y ∪ Z , for two subracks
Y and Z of X . Then X = Y or X = Z .

Proof.

Assume that X 6= Y , then X is generated by Y c ⊆ Z , by Lemma
1. Since Z is a subrack of X , one concludes that X = Z .

Corollary 1

Let X be a connected rack and x ∈ X . Let p, q ∈ N≥2, and
Y = {y ∈ X | ϕp

x (y) = y}, Z = {z ∈ X | ϕq
x (z) = z}. Assume that

X = Y ∪ Z . Then X = Y or X = Z .



Obstruction on the Profile of a Connected Rack



Obstruction on the Profile of a Connected Rack

Proposition 1.

There is no finite connected rack X (respectively, quandle) of
profile 1m0`m1

1 `m2
2 ...`mk

k such that lcm(`1, `2, ..., `i ) and
lcm(`i+1, `i+2, ..., `k) do not divide each other.



Obstruction on the Profile of a Connected Rack

Proposition 1.

There is no finite connected rack X (respectively, quandle) of
profile 1m0`m1

1 `m2
2 ...`mk

k such that lcm(`1, `2, ..., `i ) and
lcm(`i+1, `i+2, ..., `k) do not divide each other.

Proof.

Suppose that there exists a finite connected rack X with given
profile. Let p = lcm(`1, `2, ..., `i ), and q = lcm(`i+1, `i+2, ..., `k).
Then,

Y = {y ∈ X | ϕp
x (y) = y}, Z = {z ∈ X | ϕq

x (z) = z}.

By the self-distributivity of B, the sets Y and Z are subracks of X .
Then X = Y ∪ Z by definition of p and q and, X 6= Y and X 6= Z ,
a contradiction to Corollary 1.
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By above results, there is no finite connected rack X of profile
1m0`m1

1 `m2
2 with `1 - `2. Therefore, Hayashi’s conjecture is true

for all finite connected racks and quandles with profiles
1m0`m1

1 `m2
2 .

For the profile 1m0`m1
1 `m2

2 `m3
3 , we have the following

possibilities.

If `1, `2 | `3 then Hayashi’s conjecture is true.
If `i - `3 or `i - `3 and `j | `3 for distinct i , j in {1, 2}, then we
have further two cases to consider.

The case when `k - lcm(`k+1, `k+2) (mod 3) for k ∈ {1, 2, 3},
is excluded by Proposition 1.
The case when `k | lcm(`k+1, `k+2) (mod 3) for k ∈ {1, 2, 3},
can not be excluded by Proposition 1. One such profile is:
1m0`1`2`3 with (`1, `2, `3) = (pq, pr , qr) for pairwise distinct
primes p, q, r . For example:

1m06.10.15 = 1m0(2.3)(2.5)(3.5) with (p, q, r) = (2, 3, 5).
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There is no finite connected crossed set with profile 1m0`1`2`3,
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Sketch of Proof

Suppose that there exists a finite connected crossed set X with
given profile. Let x ∈ X , t ≥ 1,

Xt = {y ∈ X | ϕt
x (y) = y},

and X ′
t = Xt \ X1 for all t > 1. Then X is the disjoint union of

non-empty sets X1, X ′
pq, X ′

pr , X ′
qr . Now we have the following steps.
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y B (X \ Xt) = X \ Xt for all y ∈ Xt .

Step 2

For all y ∈ X ′
pq, there exists z ∈ X ′

pr , such that y B z 6= z .

Step 3

Let y ∈ X ′
pq and z ∈ X \ Xpq with y B z 6= z . Let t be the smallest

positive integer with ϕt
y (z) = z , then t = pr or t = qr .

Step 4

Let y ∈ X ′
pq. Then there exist z ∈ X ′

pr , f ∈ X ′
qr such that

z B f = y or f B z = y .
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Let y ∈ X ′
pq. Then there exist z ∈ X ′
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qr with
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pr .

Step 7

Let y ∈ X ′
pq. Then y B x ∈ X ′

pq.

Step 8

Let y ∈ X ′
pq. Let ϕy = σ1σ2σ3 be the decomposition of ϕy into

the product of a pq−, pr−, and qr−cycle. Then supp(σ1) ⊆ Xpq

and supp(σ2), supp(σ3) ⊆ X ′
pr ∪ X ′
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pr by symmetry. This is
impossible since | X ′

pr |= pr 6= qr =| X ′
qr |.

Remarks

By Proposition 2, there is no connected crossed set with
profile 1m06.10.15.

By Propositions 1, 2, and Corollary 1, Hayashi’s conjecture is
true for any connected crossed set X with ϕx ∈ Aut(X ) such
that supp(ϕx ) ≤ 31.

Proposition 2 is a particular case of the following theorem.
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Questions, comments, suggestions???


