The Cycle Structure of Quandles

Naqeeb ur Rehman

Philipps University Marburg (Joint work with István Heckenberger)

Problem: Hayashi's conjecture on the cycle structure of quandles.

Problem: Hayashi's conjecture on the cycle structure of quandles.

Problem: Hayashi's conjecture on the cycle structure of quandles.

References:

• P. Lopes and D. Roseman, *On finite racks and quandles,* Comm. Algebra., (2006).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, *On finite racks and quandles,* Comm. Algebra., (2006).
- C. Hayashi, *Canonical forms for operation tables of finite connected quandles*, Comm. Algebra., (2013).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, *On finite racks and quandles,* Comm. Algebra., (2006).
- C. Hayashi, *Canonical forms for operation tables of finite connected quandles*, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, *On finite racks and quandles,* Comm. Algebra., (2006).
- C. Hayashi, *Canonical forms for operation tables of finite connected quandles*, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).
- I. Heckenberger, A. Lochmann, and L. Vendramin, *Nichols algebras with many cubic relations,* Trans. Amer. Math. Soc., (2015).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, *On finite racks and quandles,* Comm. Algebra., (2006).
- C. Hayashi, *Canonical forms for operation tables of finite connected quandles*, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).
- I. Heckenberger, A. Lochmann, and L. Vendramin, *Nichols algebras with many cubic relations,* Trans. Amer. Math. Soc., (2015).
- S. Guest and P. Spiga, Finite primitive groups and regular orbits of group elements, Trans. Amer. Math. Soc., (2016).

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

• the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,

イロン イヨン イヨン ・

э

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

- the map $\varphi_x: X \longrightarrow X$, $\varphi_x(y) := x \rhd y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

イロト イヨト イヨト イヨト

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

- the map $\varphi_x: X \longrightarrow X$, $\varphi_x(y) := x \rhd y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

個 ト イヨト イヨト

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

- the map $\varphi_x: X \longrightarrow X$, $\varphi_x(y) := x \rhd y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A crossed set is a quandle (X, \triangleright) which further satisfies

• $x \triangleright y = y$ whenever $y \triangleright x = x$.

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

- the map $\varphi_x: X \longrightarrow X$, $\varphi_x(y) := x \rhd y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A crossed set is a quandle (X, \triangleright) which further satisfies

•
$$x \triangleright y = y$$
 whenever $y \triangleright x = x$.

The **inner group** of a rack X is the group

$$Inn(X) = \langle \varphi_x | x \in X \rangle.$$

個 と く ヨ と く ヨ と

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\rhd : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

- the map $\varphi_x: X \longrightarrow X$, $\varphi_x(y) := x \rhd y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A crossed set is a quandle (X, \rhd) which further satisfies

•
$$x \triangleright y = y$$
 whenever $y \triangleright x = x$.

The **inner group** of a rack X is the group

$$Inn(X) = \langle \varphi_x | x \in X \rangle.$$

A rack X is called **indecomposable or connected** if Inn(X) acts transitively on X.

◆□ > ◆□ > ◆目 > ◆目 > ◆目 > ◆○ ◆

• **Conjugation Quandle** on a group *G* with $x \triangleright y = xyx^{-1}$.

Conjugation Quandle on a group G with x ▷ y = xyx⁻¹. In particular, the union of conjugacy classes of G is also a quandle under conjugation.

- Conjugation Quandle on a group G with x ▷ y = xyx⁻¹. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- Dihedral Quandle \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i \pmod{n}$.

- Conjugation Quandle on a group G with x ▷ y = xyx⁻¹. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- Dihedral Quandle \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i \pmod{n}$.
- Let A be an abelian group, α ∈ Aut(A) and 1 = id_A. Then we have a quandle structure on A, defined by:

$$x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

This quandle is known as affine quandle $Aff(A, \alpha)$.

- Conjugation Quandle on a group G with x ▷ y = xyx⁻¹. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- **Dihedral Quandle** \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i \pmod{n}$.
- Let A be an abelian group, α ∈ Aut(A) and 1 = id_A. Then we have a quandle structure on A, defined by:

$$x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

This quandle is known as **affine quandle** $Aff(A, \alpha)$.

Let G be a group, α ∈ Aut(G), and H be a subgroup of the fixed points of α in G. Then for any g, f ∈ G, the quandle structure on G/H is defined by:

$$gH \triangleright fH = g\alpha(g^{-1}f)H.$$

This quandle is known as **coset quandle** (G, H, α) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a finite rack and $\varphi_x \in Aut(X)$.

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i .

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq \dots \leq \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x .

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq \dots \leq \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

・ロト ・回ト ・ヨト ・ヨト

э

Remarks

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since
$$(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$$
 for all $x, y, z \in X$,
 $\varphi_{x \triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since
$$(x \rhd y) \rhd (x \rhd z) = x \rhd (y \rhd z)$$
 for all $x, y, z \in X$,
 $\varphi_{x \rhd y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, any two permutations of a finite connected rack X are mutually conjugate, and hence have same pattern.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since $(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$ for all $x, y, z \in X$, $\varphi_{x \triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, any two permutations of a finite connected rack X are mutually conjugate, and hence have same pattern. Therefore, the profile of a finite connected rack X is a constant sequence.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 \dots \sigma_k$ be the decomposition of φ_x into product of disjoint cycles σ_i . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \le \ell_1 \le \ell_2 \le \dots \le \ell_k$. Then the list of all ℓ_i is called the **pattern** of φ_x . The **profile** of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since $(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$ for all $x, y, z \in X$, $\varphi_{x \triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, any two permutations of a finite connected rack X are mutually conjugate, and hence have same pattern. Therefore, the profile of a finite connected rack X is a constant sequence.

 Hayashi called the pattern of any φ_x as the profile of a finite connected rack X for short.

Notation

We write the profile of a finite connected rack X as: $\begin{aligned} & Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \dots \ell_k^{m_k}, \\ \text{where } 1 < \ell_1 < \ell_2 < \dots < \ell_k, \text{ and } m_0, m_1, \dots, m_k \text{ are the multiplicities of } 1, \ell_1, \ell_2, \dots, \ell_k, \text{ respectively.} \end{aligned}$

イロト イヨト イヨト イヨト

3

Notation

We write the profile of a finite connected rack X as: $\begin{aligned} & Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} ... \ell_k^{m_k}, \\ \text{where } 1 < \ell_1 < \ell_2 < ... < \ell_k, \text{ and } m_0, m_1, ..., m_k \text{ are the multiplicities of } 1, \ell_1, \ell_2, ..., \ell_k, \text{ respectively.} \end{aligned}$

Hayashi's Conjecture

Let X be a finite connected quandle with

$$Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \dots \ell_k^{m_k}.$$

Then $\ell_i | \ell_k$ (i.e., ℓ_i divides ℓ_k) for any integer *i* with $1 \le i \le k - 1$.

<ロ> <同> <同> < 回> < 回> < □> < □> <

Notation

We write the profile of a finite connected rack X as: $\begin{aligned} & Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} ... \ell_k^{m_k}, \\ \text{where } 1 < \ell_1 < \ell_2 < ... < \ell_k, \text{ and } m_0, m_1, ..., m_k \text{ are the multiplicities of } 1, \ell_1, \ell_2, ..., \ell_k, \text{ respectively.} \end{aligned}$

Hayashi's Conjecture

Let X be a finite connected quandle with

$$Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \dots \ell_k^{m_k}.$$

Then $\ell_i | \ell_k$ (i.e., ℓ_i divides ℓ_k) for any integer *i* with $1 \le i \le k - 1$.

Example

$$Profile(SmallQuandle(42,7)) = 1^2.2^2.3^4.6^4.$$
DQC

• Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n ,

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n),

• Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i \pmod{n}$, and

$$\varphi_i = \prod_{j=1}^{\left[\frac{n-1}{2}\right]} (i+j \ i-j) \pmod{n}.$$

• Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i \pmod{n}$, and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

Hence, $Profile(\mathbb{D}_n) = 1^{m_0} 2^{m_1}$.

L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n.

• Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i \pmod{n}$, and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

Hence, $Profile(\mathbb{D}_n) = 1^{m_0} 2^{m_1}$.

L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine.

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles.

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How?

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size p, p^2 and p^3 .

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size p, p² and p³. How?

Hayashi's conjecture is trivially true for dihedral quandle D_n, since for i, j ∈ D_n, φ_i(j) = 2j − i (mod n), and

$$\varphi_i = \prod_{j=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (i+j \ i-j) \pmod{n}.$$

- L. Vendramin calculated all connected quandles of size n ≤ 47. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where q(n) := quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size p, p² and p³. How? By using Bors's result.

◆□ > ◆□ > ◆目 > ◆目 > ◆目 > ◆○ ◆

 A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a regular cycle or orbit. For example, α = (1 2)(3 4 5)(6 7 8 9 10 11) has a regular cycle,

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9 \ 10 \ 11)$ has a regular cycle, while $\beta = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9)$ has no regular cycle.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $\beta = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$ has no regular cycle.
- Recall that ord(α) is the least common multiple (lcm) of the cycle lengths of α.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $\beta = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of α . Therefore, if α has a regular cycle σ then all cycle lengths of α divide the $\ell(\sigma) = ord(\alpha)$.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $\beta = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$ has no regular cycle.
- Recall that ord(α) is the least common multiple (lcm) of the cycle lengths of α. Therefore, if α has a regular cycle σ then all cycle lengths of α divide the l(σ) = ord(α).
- For an affine quandle $Aff(A, \alpha)$ we have:

$$\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9 \ 10 \ 11)$ has a regular cycle, while $\beta = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9)$ has no regular cycle.
- Recall that ord(α) is the least common multiple (lcm) of the cycle lengths of α. Therefore, if α has a regular cycle σ then all cycle lengths of α divide the l(σ) = ord(α).
- For an affine quandle $Aff(A, \alpha)$ we have:

$$\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

If we take x = e, the identity of A, then $\varphi_e(y) = \alpha(y)$.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $\beta = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$ has no regular cycle.
- Recall that ord(α) is the least common multiple (lcm) of the cycle lengths of α. Therefore, if α has a regular cycle σ then all cycle lengths of α divide the l(σ) = ord(α).
- For an affine quandle $Aff(A, \alpha)$ we have:

$$\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

If we take x = e, the identity of A, then $\varphi_e(y) = \alpha(y)$. Hence, the cycle structure of φ_e is same as the cycle structure of $\alpha \in Aut(A)$.

- A. Bors proved that: Any automorphism α of a finite nilpotent group has a cycle σ such that l(σ) = ord(α).
- Such a cycle σ is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $\beta = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$ has no regular cycle.
- Recall that ord(α) is the least common multiple (lcm) of the cycle lengths of α. Therefore, if α has a regular cycle σ then all cycle lengths of α divide the l(σ) = ord(α).
- For an affine quandle $Aff(A, \alpha)$ we have:

$$\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).$$

If we take x = e, the identity of A, then $\varphi_e(y) = \alpha(y)$. Hence, the cycle structure of φ_e is same as the cycle structure of $\alpha \in Aut(A)$. Now, since an abelian group is nilpotent, the automorphism α has a regular cycle.

 Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].

 Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p².

- Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p².
- A connected quandle of size p³ is either affine or isomorphic to a coset quandle (G, H, α), where the group G has order p⁴ [by G. Bianco's PhD thesis (2015)].

- Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p².
- A connected quandle of size p³ is either affine or isomorphic to a coset quandle (G, H, α), where the group G has order p⁴ [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α):

$$gH \triangleright fH = g\alpha(g^{-1}f)H.$$

Therefore, $\varphi_H(fH) = \alpha(f)H$.

- Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p².
- A connected quandle of size p³ is either affine or isomorphic to a coset quandle (G, H, α), where the group G has order p⁴ [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α):

$$gH \triangleright fH = g\alpha(g^{-1}f)H.$$

Therefore, $\varphi_H(fH) = \alpha(f)H$. Since a group of prime power order is nilpotent, Hayashi's conjecture is true for all connected quandles of size p^3 .

- Connected quandles of size p and p² are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p².
- A connected quandle of size p³ is either affine or isomorphic to a coset quandle (G, H, α), where the group G has order p⁴ [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α):

$$gH \triangleright fH = g\alpha(g^{-1}f)H.$$

Therefore, $\varphi_H(fH) = \alpha(f)H$. Since a group of prime power order is nilpotent, Hayashi's conjecture is true for all connected quandles of size p^3 .

• The results of A. Bors, S. Guest and P. Spiga can be used for case-by-case analysis of some other known families of connected quandles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへの

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

個 ト イヨト イヨト

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

Lemma 1

Let Y be a subrack of X with $Y \neq X$. Then X is generated by Y^c .

イロト イヨト イヨト イヨト

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

Lemma 1

Let Y be a subrack of X with $Y \neq X$. Then X is generated by Y^c .

Proof.

Since Y is a subrack of X, we conclude that $Y \triangleright Y^c = Y^c$. Let

$$Z = \{y_1 \triangleright (y_2 \triangleright ... \triangleright (y_{n-1} \triangleright y_n)) \mid n \ge 1, y_1, ..., y_n \in Y^c\}.$$

Then $y \triangleright z \in Z$ for all $y \in Y^c$, $z \in Z$ by definition, and $y \triangleright z \in Z$ for all $y \in Y$ by the self-distributivity of \triangleright and the Y-invariance of Y^c . Hence Z is a non-empty X-invariant subset of X, and therefore equal to X since X is connected.

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then X = Y or X = Z.

イロン イボン イヨン 一日

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then X = Y or X = Z.

Proof.

Assume that $X \neq Y$, then X is generated by $Y^c \subseteq Z$, by Lemma 1. Since Z is a subrack of X, one concludes that X = Z.

イロト イヨト イヨト イヨト
Subracks of a Connected Rack

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then X = Y or X = Z.

Proof.

Assume that $X \neq Y$, then X is generated by $Y^c \subseteq Z$, by Lemma 1. Since Z is a subrack of X, one concludes that X = Z.

Corollary 1

Let X be a connected rack and $x \in X$. Let $p, q \in \mathbb{N}_{\geq 2}$, and $Y = \{y \in X \mid \varphi_x^p(y) = y\}, Z = \{z \in X \mid \varphi_x^q(z) = z\}$. Assume that $X = Y \cup Z$. Then X = Y or X = Z.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへの

Proposition 1.

There is no finite connected rack X (respectively, quandle) of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \dots \ell_k^{m_k}$ such that $lcm(\ell_1, \ell_2, \dots, \ell_i)$ and $lcm(\ell_{i+1}, \ell_{i+2}, \dots, \ell_k)$ do not divide each other.

イロン イボン イヨン 一日

Proposition 1.

There is no finite connected rack X (respectively, quandle) of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \dots \ell_k^{m_k}$ such that $lcm(\ell_1, \ell_2, \dots, \ell_i)$ and $lcm(\ell_{i+1}, \ell_{i+2}, \dots, \ell_k)$ do not divide each other.

Proof.

Suppose that there exists a finite connected rack X with given profile. Let $p = lcm(\ell_1, \ell_2, ..., \ell_i)$, and $q = lcm(\ell_{i+1}, \ell_{i+2}, ..., \ell_k)$. Then,

$$Y = \{y \in X \mid \varphi_x^p(y) = y\}, Z = \{z \in X \mid \varphi_x^q(z) = z\}.$$

By the self-distributivity of \triangleright , the sets Y and Z are subracks of X. Then $X = Y \cup Z$ by definition of p and q and, $X \neq Y$ and $X \neq Z$, a contradiction to Corollary 1.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

• By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$.

• By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$.

• By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.

イロト イヨト イヨト イヨト

3

• For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.

• By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.

イロン 不同 とくほ とくほ とう

3

- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3},$ we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3},$ we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.
 - The case when ℓ_k ∤ lcm(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1,2,3}, is excluded by Proposition 1.

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \ell_3^{m_3}$, we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.
 - The case when ℓ_k ∤ lcm(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1, 2, 3}, is excluded by Proposition 1.
 - The case when $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1.

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \ell_3^{m_3}$, we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.
 - The case when ℓ_k ∤ lcm(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1, 2, 3}, is excluded by Proposition 1.
 - The case when ℓ_k | *lcm*(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1,2,3}, can not be excluded by Proposition 1. One such profile is:

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.
 - The case when ℓ_k ∤ lcm(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1, 2, 3}, is excluded by Proposition 1.
 - The case when $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1. One such profile is: $1^{m_0}\ell_1\ell_2\ell_3$ with $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

- By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$.
- For the profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \ell_3^{m_3}$, we have the following possibilities.
 - If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
 - If l_i ∤ l₃ or l_i ∤ l₃ and l_j | l₃ for distinct i, j in {1,2}, then we have further two cases to consider.
 - The case when ℓ_k ∤ lcm(ℓ_{k+1}, ℓ_{k+2}) (mod 3) for k ∈ {1,2,3}, is excluded by Proposition 1.
 - The case when $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1. One such profile is: $1^{m_0}\ell_1\ell_2\ell_3$ with $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r. For example:

 $1^{m_0}6.10.15 = 1^{m_0}(2.3)(2.5)(3.5)$ with (p, q, r) = (2, 3, 5).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへの

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

イロン イボン イヨン 一日

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

イロン イボン イヨン 一日

Sketch of Proof

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t \ge 1$,

$$X_t = \{y \in X \mid \varphi_x^t(y) = y\},\$$

イロン イボン イヨン 一日

and $X'_t = X_t \setminus X_1$ for all t > 1.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t \ge 1$,

$$X_t = \{y \in X \mid \varphi_x^t(y) = y\},\$$

and $X'_t = X_t \setminus X_1$ for all t > 1. Then X is the disjoint union of non-empty sets $X_1, X'_{pq}, X'_{pr}, X'_{qr}$.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t \ge 1$,

$$X_t = \{y \in X \mid \varphi_x^t(y) = y\},\$$

and $X'_t = X_t \setminus X_1$ for all t > 1. Then X is the disjoint union of non-empty sets $X_1, X'_{pq}, X'_{pr}, X'_{qr}$. Now we have the following steps.

X_t is a non-empty subrack of X. In particular,

$$y \rhd (X \setminus X_t) = X \setminus X_t$$
 for all $y \in X_t$.

 X_t is a non-empty subrack of X. In particular,

$$y \triangleright (X \setminus X_t) = X \setminus X_t$$
 for all $y \in X_t$.

(日) (四) (日) (日) (日)

Step 2

For all $y \in X'_{pq}$, there exists $z \in X'_{pr}$, such that $y \triangleright z \neq z$.

 X_t is a non-empty subrack of X. In particular,

$$y \triangleright (X \setminus X_t) = X \setminus X_t$$
 for all $y \in X_t$.

Step 2

For all
$$y \in X'_{pq}$$
, there exists $z \in X'_{pr}$, such that $y \rhd z \neq z$.

Step 3

Let $y \in X'_{pq}$ and $z \in X \setminus X_{pq}$ with $y \triangleright z \neq z$. Let t be the smallest positive integer with $\varphi_y^t(z) = z$, then t = pr or t = qr.

 X_t is a non-empty subrack of X. In particular,

$$y \triangleright (X \setminus X_t) = X \setminus X_t$$
 for all $y \in X_t$.

Step 2

For all
$$y \in X'_{pq}$$
, there exists $z \in X'_{pr}$, such that $y \rhd z \neq z$.

Step 3

Let $y \in X'_{pq}$ and $z \in X \setminus X_{pq}$ with $y \triangleright z \neq z$. Let t be the smallest positive integer with $\varphi_y^t(z) = z$, then t = pr or t = qr.

Step 4

Let
$$y \in X'_{pq}$$
. Then there exist $z \in X'_{pr}$, $f \in X'_{qr}$ such that $z \triangleright f = y$ or $f \triangleright z = y$.

Assume that X'_{pr} and X'_{qr} are subracks of X. Then X'_{pq} is not a subrack of X.

Assume that X'_{pr} and X'_{qr} are subracks of X. Then X'_{pq} is not a subrack of X.

イロト イヨト イヨト イヨト

Step 6

Let $y \in X'_{pq}$. Then there exist $z \in X'_{pr}$ and $f \in X'_{qr}$ with $y \triangleright z \in X'_{qr}$, $y \triangleright f \in X'_{pr}$.

Assume that X'_{pr} and X'_{qr} are subracks of X. Then X'_{pq} is not a subrack of X.

Step 6

Let
$$y \in X'_{pq}$$
. Then there exist $z \in X'_{pr}$ and $f \in X'_{qr}$ with $y \triangleright z \in X'_{qr}$, $y \triangleright f \in X'_{pr}$.

Step 7

Let $y \in X'_{pq}$. Then $y \triangleright x \in X'_{pq}$.

Assume that X'_{pr} and X'_{qr} are subracks of X. Then X'_{pq} is not a subrack of X.

Step 6

Let $y \in X'_{pq}$. Then there exist $z \in X'_{pr}$ and $f \in X'_{qr}$ with $y \triangleright z \in X'_{qr}$, $y \triangleright f \in X'_{pr}$.

Step 7

Let
$$y \in X'_{pq}$$
. Then $y \triangleright x \in X'_{pq}$.

Step 8

Let $y \in X'_{pq}$. Let $\varphi_y = \sigma_1 \sigma_2 \sigma_3$ be the decomposition of φ_y into the product of a pq-, pr-, and qr-cycle. Then $supp(\sigma_1) \subseteq X_{pq}$ and $supp(\sigma_2), supp(\sigma_3) \subseteq X'_{pr} \cup X'_{qr}$.

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \triangleright x \neq x$ and $\varphi_z^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y \triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \triangleright z \in X'_{pr} \cup X'_{qr}$. If $y \triangleright z \in X'_{pr}$, then the entries of pr-cycle of $\varphi_{y \triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \triangleright x \in X'_{pq}$. Thus $y \triangleright z \in X'_{qr}$, which implies that $y \triangleright X'_{pr} \subseteq X'_{qr}$ and $y \triangleright X'_{qr} \subseteq X'_{pr}$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

|山山 | 山田 | 山田 |

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \triangleright x \neq x$ and $\varphi_z^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y \triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \triangleright z \in X'_{pr} \cup X'_{qr}$. If $y \triangleright z \in X'_{pr}$, then the entries of pr-cycle of $\varphi_{y \triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \triangleright x \in X'_{pq}$. Thus $y \triangleright z \in X'_{qr}$, which implies that $y \triangleright X'_{pr} \subseteq X'_{qr}$ and $y \triangleright X'_{qr} \subseteq X'_{pr}$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \triangleright x \neq x$ and $\varphi_z^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y \triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \triangleright z \in X'_{pr} \cup X'_{qr}$. If $y \triangleright z \in X'_{pr}$, then the entries of pr-cycle of $\varphi_{y \triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \triangleright x \in X'_{pq}$. Thus $y \triangleright z \in X'_{qr}$, which implies that $y \triangleright X'_{pr} \subseteq X'_{qr}$ and $y \triangleright X'_{qr} \subseteq X'_{pr}$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

• By Proposition 2, there is no connected crossed set with profile 1^{*m*}₀6.10.15.

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \triangleright x \neq x$ and $\varphi_z^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y \triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \triangleright z \in X'_{pr} \cup X'_{qr}$. If $y \triangleright z \in X'_{pr}$, then the entries of pr-cycle of $\varphi_{y \triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \triangleright x \in X'_{pq}$. Thus $y \triangleright z \in X'_{qr}$, which implies that $y \triangleright X'_{pr} \subseteq X'_{qr}$ and $y \triangleright X'_{qr} \subseteq X'_{pr}$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

- By Proposition 2, there is no connected crossed set with profile 1^m₀6.10.15.
- By Propositions 1, 2, and Corollary 1, Hayashi's conjecture is true for any connected crossed set X with φ_x ∈ Aut(X) such that supp(φ_x) ≤ 31.

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \triangleright x \neq x$ and $\varphi_z^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y \triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \triangleright z \in X'_{pr} \cup X'_{qr}$. If $y \triangleright z \in X'_{pr}$, then the entries of pr-cycle of $\varphi_{y \triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \triangleright x \in X'_{pq}$. Thus $y \triangleright z \in X'_{qr}$, which implies that $y \triangleright X'_{pr} \subseteq X'_{qr}$ and $y \triangleright X'_{qr} \subseteq X'_{pr}$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

- By Proposition 2, there is no connected crossed set with profile 1^{m0}6.10.15.
- By Propositions 1, 2, and Corollary 1, Hayashi's conjecture is true for any connected crossed set X with φ_x ∈ Aut(X) such that supp(φ_x) ≤ 31.
- Proposition 2 is a particular case of the following theorem.

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$\ell_1 = \prod_{i=1}^r p_i^{a_i}$$
, $\ell_2 = \prod_{i=1}^r p_i^{b_i}$ and $\ell_3 = \prod_{i=1}^r p_i^{c_i}$,

for non-negative integers a_i , b_i and c_i for all $1 \le i \le r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.
Obstruction on the Profile of a Connected Rack

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$\ell_1 = \prod_{i=1}^r p_i^{a_i}$$
, $\ell_2 = \prod_{i=1}^r p_i^{b_i}$ and $\ell_3 = \prod_{i=1}^r p_i^{c_i}$,

for non-negative integers a_i , b_i and c_i for all $1 \le i \le r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.

Obstruction on the Profile of a Connected Rack

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$\ell_1 = \prod_{i=1}^r p_i^{a_i}$$
, $\ell_2 = \prod_{i=1}^r p_i^{b_i}$ and $\ell_3 = \prod_{i=1}^r p_i^{c_i}$,

for non-negative integers a_i , b_i and c_i for all $1 \le i \le r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid lcm(\ell_{k+1}, \ell_{k+2}) \pmod{3}$ for $k \in \{1, 2, 3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.

Questions, comments, suggestions???