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o x> (y>z)=(x>y)> (x> z) (i.e., > is self-distributive).
A quandle is a rack (X, >) which further satisfies

@ x> x = x for all x € X (i.e., > is idempotent).
A crossed set is a quandle (X, >) which further satisfies

@ x>y = y whenever y > x = x.
The inner group of a rack X is the group

Inn(X) = (px|x € X).

A rack X is called indecomposable or connected if /nn(X) acts
transitively on X.

i






@ Conjugation Quandle on a group G with x >y = xyx 1.




@ Conjugation Quandle on a group G with x > y = xyx~ 1. In
particular, the union of conjugacy classes of G is also a

quandle under conjugation.




@ Conjugation Quandle on a group G with x > y = xyx~ 1. In
particular, the union of conjugacy classes of G is also a
quandle under conjugation.

o Dihedral Quandle D, on Z, with i>j=2j— i (mod n).




Examples

@ Conjugation Quandle on a group G with x >y = xyx 1.

particular, the union of conjugacy classes of G is also a
quandle under conjugation.

In

o Dihedral Quandle D, on Z, with i>j=2j— i (mod n).

@ Let A be an abelian group, a € Aut(A) and 1 = ida. Then we
have a quandle structure on A, defined by:

x>y =(1-a)x)+aly).
This quandle is known as affine quandle AfA, «).




Examples

@ Conjugation Quandle on a group G with x >y = xyx 1.

particular, the union of conjugacy classes of G is also a
quandle under conjugation.
@ Dihedral Quandle D, on Z, with i > j = 2j — i (mod n).
@ Let A be an abelian group, a € Aut(A) and 1 = ida. Then we
have a quandle structure on A, defined by:
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In

o Let G be a group, a € Aut(G), and H be a subgroup of the
fixed points of a in G. Then for any g, f € G, the quandle
structure on G/H is defined by:

gH > fH = ga(g1f)H.
This quandle is known as coset quandle (G, H, a).
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Remarks
@ Since (x> y)> (x>z)=x> (y > z) for all x,y,z € X,

Pxiy = Px Py
By using this one can see that, any two permutations of a
finite connected rack X are mutually conjugate, and
hence have same pattern. Therefore, the profile of a finite
connected rack X is a constant sequence.

@ Hayashi called the pattern of any ¢, as the profile of a finite
connected rack X for short.
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Hayashi's Conjecture

Let X be a finite connected quandle with

Profile(X) = 1mo¢i™ ¢ ™.

Then ¢;|¢y (i.e., ¢; divides £y) for any integer i with 1 </ < k — 1.

Profile(SmallQuandle(42,7)) = 12.22.3*.6%.
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@ A. Bors proved that: Any automorphism « of a finite
nilpotent group has a cycle o such that /(o) = ord(«).

@ Such a cycle o is called a regular cycle or orbit. For
example, o = (12)(345)(6789 10 11) has a regular cycle,
while 8 = (12)(345)(6 7 89) has no regular cycle.

@ Recall that ord(«) is the least common multiple (Icm) of the
cycle lengths of a. Therefore, if a has a regular cycle o then
all cycle lengths of « divide the ¢(o) = ord(«).

@ For an affine quandle AfRA, a)) we have:

px(y) = x>y = (1-a)(x) +aly).
If we take x = e, the identity of A, then pe(y) = a(y).
Hence, the cycle structure of (. is same as the cycle structure
of a € Aut(A). Now, since an abelian group is nilpotent, the
automorphism « has a regular cycle.
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@ Connected quandles of size p and p? are affine [by P. Etingof,
R. Guralnik, A. Soloviev (2001), and M. Grafia (2004)].
Therefore, Hayashi's conjecture is true for connected quandles
of size p and pZ.

@ A connected quandle of size p3 is either affine or isomorphic
to a coset quandle (G, H, ), where the group G has order p*
[by G. Bianco's PhD thesis (2015)]. Now, recall that for the
coset quandle (G, H, a):

gH > fH = ga(g=1f)H.
Therefore, p(fH) = a(f)H. Since a group of prime power
order is nilpotent, Hayashi’s conjecture is true for all
connected quandles of size p3.

@ The results of A. Bors, S. Guest and P. Spiga can be used for
case-by-case analysis of some other known families of
connected quandles.
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Subracks of a Connected Rack

Let X be a finite connected rack. For any subset Y of X, the
subrack of X generated by Y is the smallest subrack of X
containing Y. For any subrack Y C X let Y< =X\ Y.

Let Y be a subrack of X with Y # X. Then X is generated by Y°.

Proof.
Since Y is a subrack of X, we conclude that Y > Y€ = Y°€. Let

Z = {yl I> ()/2 I> I> (}/n—l DYn)) | n 2 17y17"'7.yn G YC}

Then y>z € Z for all y € Y,z € Z by definition, and y >z € Z
for all y € Y by the self-distributivity of > and the Y-invariance of
Y¢. Hence Z is a non-empty X-invariant subset of X, and
therefore equal to X since X is connected.
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Subracks of a Connected Rack

Let X be a connected rack such that X = Y U Z, for two subracks
Y and Zof X. Then X =Y or X = Z.

Assume that X #£ Y, then X is generated by Y< C Z, by Lemma
1. Since Z is a subrack of X, one concludes that X = Z.




Subracks of a Connected Rack

Let X be a connected rack such that X = Y U Z, for two subracks

Yand Zof X. Then X =Y or X = Z.

Proof.

Assume that X #£ Y, then X is generated by Y< C Z, by Lemma
1. Since Z is a subrack of X, one concludes that X = Z.

Corollary 1

Let X be a connected rack and x € X. Let p,q € N>, and
Y={yeX|hy)=y},Z={ze X|¢l(z) =z} Assume that
X=YUZ. Then X =Y or X = Z.
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Proposition 1.

There is no finite connected rack X (respectively, quandle) of
profile 1M ¢™ (7 . £ such that lem(¢q, ¢, ..., ¢;) and
lem(£it1,%i12, ..., £x) do not divide each other.
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Proposition 1.

There is no finite connected rack X (respectively, quandle) of
profile 1M ¢™ (7 . £ such that lem(¢q, ¢, ..., ¢;) and
lem(£it1,%i12, ..., £x) do not divide each other.

Proof.

Suppose that there exists a finite connected rack X with given
profile. Let p = Iem({1,¥a,...,¢;), and q = lem({iy1, Livo, ..., Lk)-
Then,

Y={yeX|pi(y) =y}, Z={zeX|pi(z) =z}.

By the self-distributivity of >, the sets Y and Z are subracks of X.
Then X = Y U Z by definition of p and g and, X # Y and X # Z,
a contradiction to Corollary 1.
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@ By above results, there is no finite connected rack X of profile
1mog™ 032 with ¢1 1 £. Therefore, Hayashi's conjecture is true
for all finite connected racks and quandles with profiles
T

@ For the profile 1™ ¢™ (3¢5, we have the following
possibilities.

o If 41,05 | 3 then Hayashi's conjecture is true.
o If £j {43 0r¢ifl3 and {; | {3 for distinct i,j in {1,2}, then we
have further two cases to consider.
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is excluded by Proposition 1.
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can not be excluded by Proposition 1.




Obstruction on the Profile of a Connected Rack

@ By above results, there is no finite connected rack X of profile
1mog™ 032 with ¢1 1 £. Therefore, Hayashi's conjecture is true
for all finite connected racks and quandles with profiles
T

@ For the profile 1™ ¢™ (3¢5, we have the following
possibilities.

o If 41,05 | 3 then Hayashi's conjecture is true.
o If £j {43 0r¢ifl3 and {; | {3 for distinct i,j in {1,2}, then we
have further two cases to consider.

@ The case when ¢y t lem({x11, lkt2) (mod 3) for k € {1, 2,3},
is excluded by Proposition 1.

@ The case when ¢y | lem({x11, lkt2) (mod 3) for k € {1,2,3},
can not be excluded by Proposition 1. One such profile is:




Obstruction on the Profile of a Connected Rack

@ By above results, there is no finite connected rack X of profile
1mog™ 032 with ¢1 1 £. Therefore, Hayashi's conjecture is true
for all finite connected racks and quandles with profiles
T

@ For the profile 1™ ¢™ (3¢5, we have the following
possibilities.

o If 41,05 | 3 then Hayashi's conjecture is true.
o If £j {43 0r¢ifl3 and {; | {3 for distinct i,j in {1,2}, then we
have further two cases to consider.

@ The case when ¢y t lem({x11, lkt2) (mod 3) for k € {1, 2,3},
is excluded by Proposition 1.

@ The case when ¢y | lem({x11, lkt2) (mod 3) for k € {1,2,3},
can not be excluded by Proposition 1. One such profile is:
1m0 ¢y 0r03 with (41,42, ¢3) = (pg, pr, gr) for pairwise distinct
primes p, g, r.
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Obstruction on the Profile of a Connected Rack

@ By above results, there is no finite connected rack X of profile
1mog™ 032 with ¢1 1 £. Therefore, Hayashi's conjecture is true
for all finite connected racks and quandles with profiles
T

@ For the profile 1™ ¢™ (3¢5, we have the following
possibilities.

o If 41,05 | 3 then Hayashi's conjecture is true.
o If £j {43 0r¢ifl3 and {; | {3 for distinct i,j in {1,2}, then we
have further two cases to consider.

@ The case when ¢y t lem({x11, lkt2) (mod 3) for k € {1, 2,3},
is excluded by Proposition 1.

@ The case when ¢y | lem({x11, lkt2) (mod 3) for k € {1,2,3},
can not be excluded by Proposition 1. One such profile is:
1m0 ¢y 0r03 with (41,42, ¢3) = (pg, pr, gr) for pairwise distinct
primes p, q, r. For example:

1m6.10.15 = 1™(2.3)(2.5)(3.5) with (p,q,r) = (2,3,5).
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Proposition 2

There is no finite connected crossed set with profile 17041 (¢,
where (¢1,¢2,¢3) = (pq, pr, qr) for pairwise distinct primes p, q, r.
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Proposition 2

There is no finite connected crossed set with profile 1™/, /573,
where (¢1,¢2,¢3) = (pq, pr, qr) for pairwise distinct primes p, q, r.

Sketch of Proof
Suppose that there exists a finite connected crossed set X with

given profile. Let x € X, t > 1,
Xe={y € X |pi(y) =y}
and X{ = X; \ Xy for all t > 1. Then X is the disjoint union of

non-empty sets X1, X;,,, X;,., Xg,. Now we have the following steps.




X is a non-empty subrack of X. In particular,

yD(X\Xt):X\Xt forallyEXt.




X is a non-empty subrack of X. In particular,

yD(X\Xt):X\Xt forallyEXt.

For all y € X/ _, there exists z € X!

pg orr Such that y >z # z.




X is a non-empty subrack of X. In particular,

y > (X\ Xe) = X\ X; for all y € X,.

For all y € X/ _, there exists z € X!

pq orr Such that y >z # z.

Let y € X}, and z € X\ X,q with y > z # z. Let t be the smallest
positive integer with ¢} (z) = z, then t = pr or t = qr.




X is a non-empty subrack of X. In particular,

y > (X\ Xe) = X\ X; for all y € X,.

For all y € X/, there exists z € X! , such that y > z # z.

pq: pr

Step 3

Let y € X}, and z € X\ X,q with y > z # z. Let t be the smallest
positive integer with ¢} (z) = z, then t = pr or t = qr.

| \

Step 4

Let y € X}, Then there exist z € X,
z>f=yorf>z=y.

f € X, such that




Assume that X}, and X, are subracks of X. Then X} is not a
subrack of X.




Assume that X}, and X, are subracks of X. Then X} is not a
subrack of X.

Step 6

| A\

/ . / / a
Let y € X,,. Then there exist z € X}, and f € Xg, with
y>ze Xy, y>feX,.




Assume that X}, and X, are subracks of X. Then X} is not a
subrack of X.

Step 6

/ . / / a
Let y € X,,. Then there exist z € X}, and f € Xg, with
y>ze Xy, y>feX,.

| A\

Let y € X, Then y > x € X,




Assume that X}, and X, are subracks of X. Then X} is not a
subrack of X.

| A\

Step 6

!/ Q !/ !/ 0
Let y € X,,. Then there exist z € X}, and f € Xg, with
y>ze Xy, y>feX,.

Let y € X, Then y > x € X,

Let y € X,’,q. Let ¢, = 010203 be the decomposition of ¢, into
the product of a pg—, pr—, and gr—cycle. Then supp(c1) C Xpq
and supp(c2), supp(a3) C Xl U X,




Sketch of Proof Continue

Let y € X}, and z € X/, then z > x # x and ¢7' (x) = x, by Step
7. Therefore b ,(y > x) = y > x. Moreover, y 1> x € Xbq by
Step 7. Step 1 implies that y >z € X, U Xp,. If y >z € X}, then
the entries of pr—cycle of ¢, belong to X,,, by Step 8, in
contradiction to y > x € X;,.. Thus y > z € X, which implies
that y > X, C Xg, and y > X7, C X}, by symmetry. This is
impossible since | X}, |= pr # qr =[ X, |.
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that y > X, C Xg, and y > X7, C X}, by symmetry. This is
impossible since | X}, |= pr # qr =[ X, |.
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Sketch of Proof Continue

Let y € X}, and z € X/, then z > x # x and ¢7' (x) = x, by Step
7. Therefore gpﬁgz(y > x) = y > x. Moreover, y > x € X}, by
Step 7. Step 1 implies that y >z € X, U Xp,. If y >z € X}, then
the entries of pr—cycle of ¢, belong to X,,, by Step 8, in
contradiction to y > x € X;,.. Thus y > z € X, which implies
that y > X, C Xg, and y > X7, C X}, by symmetry. This is
impossible since | X}, |= pr # qr =[ X, |.
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RENEIS

@ By Proposition 2, there is no connected crossed set with
profile 1™6.10.15.
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Sketch of Proof Continue

Let y € X}, and z € X/, then z > x # x and ¢7' (x) = x, by Step
7. Therefore @y ,(y > x) = y > x. Moreover, y > x € Xbq by
Step 7. Step 1 implies that y >z € X, U Xp,. If y >z € X}, then
the entries of pr—cycle of ¢, belong to X,,, by Step 8, in
contradiction to y > x € X;,.. Thus y > z € X, which implies
that y > X, C Xg, and y > X7, C X}, by symmetry. This is
impossible since | X}, |= pr # qr =[ X, |.

\

Remarks
@ By Proposition 2, there is no connected crossed set with
profile 1™6.10.15.
@ By Propositions 1, 2, and Corollary 1, Hayashi’'s conjecture is
true for any connected crossed set X with ¢, € Aut(X) such
that supp(¢x) < 31.
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Sketch of Proof Continue

Let y € X}, and z € X/, then z > x # x and ¢7' (x) = x, by Step
7. Therefore @y ,(y > x) = y > x. Moreover, y > x € Xbq by
Step 7. Step 1 implies that y >z € X, U Xp,. If y >z € X}, then
the entries of pr—cycle of ¢, belong to X,,, by Step 8, in
contradiction to y > x € X;,.. Thus y > z € X, which implies
that y > X, C Xg, and y > X7, C X}, by symmetry. This is
impossible since | X}, |= pr # qr =[ X, |.

\

Remarks
@ By Proposition 2, there is no connected crossed set with
profile 1™6.10.15.
@ By Propositions 1, 2, and Corollary 1, Hayashi’'s conjecture is
true for any connected crossed set X with ¢, € Aut(X) such
that supp(¢x) < 31.

@ Proposition 2 is a particular case of the following theorem.

-
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Let p1, p2, ..., pr be pairwise distinct primes for positive integer r.
Let

leléz Hp[ and€3—le,

for non-negative integers a;, b; and ¢; for all1 < i < r. Let
1<l <ty <ty th 'f€3, Uy 'f€3 and 0 ‘ lcm(€k+1,€k+2) (mod 3)
for k € {1,2,3}. Then there is no finite connected crossed set X
with profile 1"00105¢3.
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Questions, comments, suggestions???



