The Cycle Structure of Quandles

Naqeeb ur Rehman

Philipps University Marburg (Joint work with István Heckenberger)

4日)

 $2Q$

Problem: Hayashi's conjecture on the cycle structure of quandles.

Problem: Hayashi's conjecture on the cycle structure of quandles.

Problem: Hayashi's conjecture on the cycle structure of quandles.

References:

• P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra., (2006).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra., (2006).
- C. Hayashi, Canonical forms for operation tables of finite connected quandles, Comm. Algebra., (2013).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra., (2006).
- C. Hayashi, Canonical forms for operation tables of finite connected quandles, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra., (2006).
- C. Hayashi, Canonical forms for operation tables of finite connected quandles, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).
- I. Heckenberger, A. Lochmann, and L. Vendramin, Nichols algebras with many cubic relations, Trans. Amer. Math. Soc., (2015).

Problem: Hayashi's conjecture on the cycle structure of quandles.

- P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra., (2006).
- C. Hayashi, Canonical forms for operation tables of finite connected quandles, Comm. Algebra., (2013).
- A. Bors, On finite groups where the order of every automorphism is a cycle length, arxiv 1412.8418., (2014).
- I. Heckenberger, A. Lochmann, and L. Vendramin, Nichols algebras with many cubic relations, Trans. Amer. Math. Soc., (2015).
- S. Guest and P. Spiga, Finite primitive groups and regular orbits of group elements, Trans. Amer. Math. Soc., (2016).

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\triangleright : X \times X \longrightarrow X$ is a binary operation, such that for all $x, y, z \in X$:

A **rack** is a pair (X, \rhd) , where X is a non-empty set and \triangleright : $X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

• the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,

メロメ メ倒 メメ ミメメ ヨメ

Ε

 $2Q$

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $D: X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

- the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

メロメ メ御 メメ ミメメ ミメ

Ε

 $2Q$

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\triangleright : X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

- the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

ă

∢ 伊 ▶ (ミ ▶ (ミ ▶

 $2Q$

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $\triangleright : X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

- the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

ă

∢ 伊 ▶ (ミ ▶ (ミ ▶

 $2Q$

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A **crossed set** is a quandle (X, \rhd) which further satisfies

 $\bullet x \triangleright y = y$ whenever $y \triangleright x = x$.

A **rack** is a pair (X, \rhd) , where X is a non-empty set and $D: X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

- the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A **crossed set** is a quandle (X, \rhd) which further satisfies

•
$$
x \triangleright y = y
$$
 whenever $y \triangleright x = x$.

The **inner group** of a rack X is the group

$$
Inn(X)=\langle\varphi_{x}|x\in X\rangle.
$$

K 御 ▶ K 唐 ▶ K 唐 ▶

ă

 $2Q$

A **rack** is a pair (X, \rhd) , where X is a non-empty set and \triangleright : $X \times X \longrightarrow X$ is a binary operation, such that for all x*,* y*,* z ∈ X:

- the map $\varphi_x : X \longrightarrow X$, $\varphi_x(y) := x \triangleright y$, is a bijection,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ (i.e., \triangleright is self-distributive).

A **quandle** is a rack (X, \triangleright) which further satisfies

• $x \triangleright x = x$ for all $x \in X$ (i.e., \triangleright is idempotent).

A **crossed set** is a quandle (X, \rhd) which further satisfies

•
$$
x \triangleright y = y
$$
 whenever $y \triangleright x = x$.

The **inner group** of a rack X is the group

$$
Inn(X)=\langle\varphi_{x}|x\in X\rangle.
$$

A rack X is called **indecomposable or connected** if $Inn(X)$ acts transitively on X .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ めぬひ

Conjugation Quandle on a group G with $x \triangleright y = xyx^{-1}$.

Conjugation Quandle on a group G with $x \triangleright y = xyx^{-1}$. In particular, the union of conjugacy classes of G is also a quandle under conjugation.

- **Conjugation Quandle** on a group G with $x \triangleright y = xyx^{-1}$. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- **Dihedral Quandle** \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i$ (mod *n*).

- **Conjugation Quandle** on a group G with $x \triangleright y = xyx^{-1}$. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- **Dihedral Quandle** \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i$ (mod *n*).
- Let A be an abelian group, $\alpha \in Aut(A)$ and $1 = id_A$. Then we have a quandle structure on A, defined by:

$$
x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

This quandle is known as **affine quandle** Aff(A*, α*).

- **Conjugation Quandle** on a group G with $x \triangleright y = xyx^{-1}$. In particular, the union of conjugacy classes of G is also a quandle under conjugation.
- **Dihedral Quandle** \mathbb{D}_n on \mathbb{Z}_n with $i \triangleright j = 2j i$ (mod *n*).
- Let A be an abelian group, $\alpha \in Aut(A)$ and $1 = id_A$. Then we have a quandle structure on A, defined by:

$$
x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

This quandle is known as **affine quandle** Aff(A*, α*).

• Let G be a group, $\alpha \in Aut(G)$, and H be a subgroup of the fixed points of α in G. Then for any $g, f \in G$, the quandle structure on G*/*H is defined by:

$$
gH \rhd fH = g\alpha(g^{-1}f)H.
$$

This quandle is known as **coset quandle** (G*,* H*, α*).

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ めぬひ

Let X be a finite rack and $\varphi_x \in Aut(X)$.

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶

重

 299

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of φ_x into product of disjoint cycles $\sigma_i.$

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$.

つくい

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

イロメ イ御 メイヨメ イヨメー

ă

 $2Q$

Remarks

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since
$$
(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)
$$
 for all $x, y, z \in X$,

$$
\varphi_{x \triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}
$$

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since $(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$ for all $x, y, z \in X$, $\varphi_{x\triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, **any two permutations of a finite connected rack** X **are mutually conjugate**, and hence have same pattern.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

ă

 290

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since $(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$ for all $x, y, z \in X$, $\varphi_{x\triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, **any two permutations of a finite connected rack** X **are mutually conjugate**, and hence have same pattern. Therefore, the profile of a finite connected rack X is a constant sequence.

Let X be a finite rack and $\varphi_x \in Aut(X)$. Let $\varphi_x = \sigma_1 \sigma_2 ... \sigma_k$ be the decomposition of *ϕ*^x into product of disjoint cycles *σ*ⁱ . Let $\ell(\sigma_i) = \ell_i$ is the cycle length of σ_i and $1 \leq \ell_1 \leq \ell_2 \leq ... \leq \ell_k$. Then the list of all ℓ_i is called the $\mathsf{pattern}$ of $\varphi_\mathsf{x}.$ The $\mathsf{profile}$ of X is the sequence of patterns of all $\varphi_x \in Aut(X)$.

Remarks

• Since $(x \triangleright y) \triangleright (x \triangleright z) = x \triangleright (y \triangleright z)$ for all $x, y, z \in X$, $\varphi_{x\triangleright y} = \varphi_x \varphi_y \varphi_x^{-1}$

By using this one can see that, **any two permutations of a finite connected rack** X **are mutually conjugate**, and hence have same pattern. Therefore, the profile of a finite connected rack X is a constant sequence.

Hayashi called the pattern of any *ϕ*^x as the profile of a finite connected rack X for short.

Notation

We write the profile of a finite connected rack X as: $Profit(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} ... \ell_k^{m_k},$ where $1 < \ell_1 < \ell_2 < ... < \ell_k$, and $m_0, m_1, ..., m_k$ are the multiplicities of $1, \ell_1, \ell_2, ..., \ell_k$, respectively.

∢ 何 ▶ . ∢ 后 ▶ . ∢ 后 ▶ ..

つくい

Notation

We write the profile of a finite connected rack X as: $Profit(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} ... \ell_k^{m_k},$ where $1 < \ell_1 < \ell_2 < ... < \ell_k$, and $m_0, m_1, ..., m_k$ are the multiplicities of $1, \ell_1, \ell_2, ..., \ell_k$, respectively.

Hayashi's Conjecture

Let X be a finite connected quandle with

$$
Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \ldots \ell_k^{m_k}.
$$

Then $\ell_i | \ell_k$ (i.e., ℓ_i divides ℓ_k) for any integer i with $1 \leq i \leq k-1.$

Notation

We write the profile of a finite connected rack X as: $Profit(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} ... \ell_k^{m_k},$ where $1 < \ell_1 < \ell_2 < ... < \ell_k$, and $m_0, m_1, ..., m_k$ are the multiplicities of $1, \ell_1, \ell_2, ..., \ell_k$, respectively.

Hayashi's Conjecture

Let X be a finite connected quandle with

$$
Profile(X) = 1^{m_0} \ell_1^{m_1} \ell_2^{m_2} \ldots \ell_k^{m_k}.
$$

Then $\ell_i | \ell_k$ (i.e., ℓ_i divides ℓ_k) for any integer i with $1 \leq i \leq k-1.$

Example

$$
Profile(SmallQuandle(42,7)) = 12.22.34.64.
$$
\bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n ,

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i \pmod{n}$,

• Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\left[\frac{n-1}{2}\right]$

$$
\varphi_i = \prod_{j=1}^{\lfloor \frac{n}{2} \rfloor} (i + j \ i - j) \pmod{n}.
$$

n a G

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

Hence, $Profile(\mathbb{D}_n) = 1^{m_0}2^{m_1}$.

L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size *n*.

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

Hence, $Profile(\mathbb{D}_n) = 1^{m_0}2^{m_1}$.

L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine.

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles.

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How?

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size p, p^2 and p^3 .

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size p, p^2 and p^3 . How?

 \bullet Hayashi's conjecture is trivially true for dihedral quandle \mathbb{D}_n , since for $i, j \in \mathbb{D}_n$, $\varphi_i(j) = 2j - i$ (mod *n*), and $\varphi_i = \prod^{\lfloor \frac{2}{2} \rfloor}$ $\left[\frac{n-1}{2}\right]$ $(i + j i - j)$ (mod *n*).

 $j=1$

- L. Vendramin calculated all connected quandles of size $n \leq 47$. These small quandles are included in a GAP package called **Rig** (Racks in gap) as: **SmallQuandle(n, q(n))**, where $q(n) :=$ quandle number of size n. Hayashi's conjecture is true for all Rig quandles.
- Note that most Rig quandles are affine. Hayashi's conjecture is true for finite connected affine quandles. How? By using Bors's result.
- Hayashi's conjecture is true for connected quandles of size $p, p²$ and $p³$. How? By using Bors's result.

A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle,

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*. Therefore, if *α* has a regular cycle *σ* then all cycle lengths of α divide the $\ell(\sigma) = \text{ord}(\alpha)$.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*. Therefore, if *α* has a regular cycle *σ* then all cycle lengths of α divide the $\ell(\sigma) = \text{ord}(\alpha)$.
- For an affine quandle $Aff(A, \alpha)$ we have:

$$
\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*. Therefore, if *α* has a regular cycle *σ* then all cycle lengths of α divide the $\ell(\sigma) = \text{ord}(\alpha)$.
- **•** For an affine quandle $Aff(A, \alpha)$ we have:

$$
\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

If we take $x = e$, the identity of A, then $\varphi_e(y) = \alpha(y)$.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*. Therefore, if *α* has a regular cycle *σ* then all cycle lengths of α divide the $\ell(\sigma) = \text{ord}(\alpha)$.
- For an affine quandle $Aff(A, \alpha)$ we have:

$$
\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

If we take $x = e$, the identity of A, then $\varphi_e(y) = \alpha(y)$. Hence, the cycle structure of *ϕ*^e is same as the cycle structure of $\alpha \in Aut(A)$.

- A. Bors proved that: Any automorphism *α* of a finite nilpotent group has a cycle σ such that $\ell(\sigma) = \text{ord}(\alpha)$.
- Such a cycle *σ* is called a **regular cycle or orbit**. For example, $\alpha = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9\ 10\ 11)$ has a regular cycle, while $β = (1 2)(3 4 5)(6 7 8 9)$ has no regular cycle.
- Recall that $ord(\alpha)$ is the least common multiple (lcm) of the cycle lengths of *α*. Therefore, if *α* has a regular cycle *σ* then all cycle lengths of α divide the $\ell(\sigma) = \text{ord}(\alpha)$.
- For an affine quandle $Aff(A, \alpha)$ we have:

$$
\varphi_x(y) = x \triangleright y = (1 - \alpha)(x) + \alpha(y).
$$

If we take $x = e$, the identity of A, then $\varphi_e(y) = \alpha(y)$. Hence, the cycle structure of φ _e is same as the cycle structure of $\alpha \in Aut(A)$. Now, since an abelian group is nilpotent, the automorphism *α* has a regular cycle.

Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)].

Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p^2 .

- Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001), and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p^2 .
- A connected quandle of size ρ^3 is either affine or isomorphic to a coset quandle $(\textit{G}, \textit{H}, \alpha)$, where the group \textit{G} has order ρ^4 [by G. Bianco's PhD thesis (2015)].

 Ω

- Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001) , and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p^2 .
- A connected quandle of size ρ^3 is either affine or isomorphic to a coset quandle $(\textit{G}, \textit{H}, \alpha)$, where the group \textit{G} has order ρ^4 [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α) :

$$
gH \rhd fH = g\alpha(g^{-1}f)H.
$$

Therefore, $\varphi_H (fH) = \alpha(f)H$.

- Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001) , and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p^2 .
- A connected quandle of size ρ^3 is either affine or isomorphic to a coset quandle $(\textit{G}, \textit{H}, \alpha)$, where the group \textit{G} has order ρ^4 [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α) :

$$
gH \rhd fH = g\alpha(g^{-1}f)H.
$$

Therefore, $\varphi_H (fH) = \alpha(f)H$. Since a group of prime power order is nilpotent, Hayashi's conjecture is true for all connected quandles of size p^3 .

- Connected quandles of size p and p^2 are affine [by P. Etingof, R. Guralnik, A. Soloviev (2001) , and M. Graña (2004)]. Therefore, Hayashi's conjecture is true for connected quandles of size p and p^2 .
- A connected quandle of size ρ^3 is either affine or isomorphic to a coset quandle $(\textit{G}, \textit{H}, \alpha)$, where the group \textit{G} has order ρ^4 [by G. Bianco's PhD thesis (2015)]. Now, recall that for the coset quandle (G, H, α) :

$$
gH \triangleright fH = g\alpha(g^{-1}f)H.
$$

Therefore, $\varphi_H(H) = \alpha(f)H$. Since a group of prime power order is nilpotent, Hayashi's conjecture is true for all connected quandles of size p^3 .

The results of A. Bors, S. Guest and P. Spiga can be used for case-by-case analysis of some other known families of connected quandles.

K ロ > K 個 > K ミ > K ミ > ニ ミ → の Q Q →

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

つくい

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

Lemma 1

Let Y be a subrack of X with $Y \neq X$. Then X is generated by Y^c.

つのへ

Let X be a finite connected rack. For any subset Y of X, the subrack of X generated by Y is the smallest subrack of X containing Y. For any subrack $Y \subseteq X$ let $Y^c = X \setminus Y$.

Lemma 1

Let Y be a subrack of X with $Y \neq X$. Then X is generated by Y^c.

Proof.

Since Y is a subrack of X, we conclude that $Y \triangleright Y^c = Y^c$. Let

$$
Z = \{y_1 \triangleright (y_2 \triangleright ... \triangleright (y_{n-1} \triangleright y_n)) \mid n \geq 1, y_1, ..., y_n \in Y^c\}.
$$

Then $y \triangleright z \in Z$ for all $y \in Y^c$, $z \in Z$ by definition, and $y \triangleright z \in Z$ for all $y \in Y$ by the self-distributivity of \triangleright and the Y-invariance of Y^c . Hence Z is a non-empty X-invariant subset of X, and therefore equal to X since X is connected.

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then $X = Y$ or $X = Z$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

 $2Q$

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then $X = Y$ or $X = Z$.

Proof.

Assume that $X\neq Y$, then X is generated by $Y^c\subseteq Z$, by Lemma 1. Since Z is a subrack of X, one concludes that $X = Z$.

∽≏ດ
Subracks of a Connected Rack

Lemma 2

Let X be a connected rack such that $X = Y \cup Z$, for two subracks Y and Z of X. Then $X = Y$ or $X = Z$.

Proof.

Assume that $X\neq Y$, then X is generated by $Y^c\subseteq Z$, by Lemma 1. Since Z is a subrack of X, one concludes that $X = Z$.

Corollary 1

Let X be a connected rack and $x \in X$. Let $p, q \in \mathbb{N}_{\geq 2}$, and $Y = \{y \in X \mid \varphi_{x}^{p}(y) = y\}, Z = \{z \in X \mid \varphi_{x}^{q}(z) = z\}.$ Assume that $X = Y \cup Z$. Then $X = Y$ or $X = Z$.

メロトメ 伊 メ ミ メ ミ ドー ミー のなぐ

Proposition 1.

There is no finite connected rack X (respectively, quandle) of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}...\ell_k^{m_k}$ such that ${\it lcm}(\ell_1,\ell_2,...,\ell_i)$ and $lcm(\ell_{i+1}, \ell_{i+2}, ..., \ell_k)$ do not divide each other.

イロト イ部 トイヨ トイヨ トー

つくへ

Proposition 1.

There is no finite connected rack X (respectively, quandle) of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}...\ell_k^{m_k}$ such that ${\it lcm}(\ell_1,\ell_2,...,\ell_i)$ and $lcm(\ell_{i+1}, \ell_{i+2}, ..., \ell_k)$ do not divide each other.

Proof.

Suppose that there exists a finite connected rack X with given profile. Let $p = lcm(\ell_1, \ell_2, ..., \ell_i)$, and $q = lcm(\ell_{i+1}, \ell_{i+2}, ..., \ell_k)$. Then,

$$
Y = \{y \in X \mid \varphi_{x}^{p}(y) = y\}, Z = \{z \in X \mid \varphi_{x}^{q}(z) = z\}.
$$

By the self-distributivity of \triangleright , the sets Y and Z are subracks of X. Then $X = Y \cup Z$ by definition of p and q and, $X \neq Y$ and $X \neq Z$, a contradiction to Corollary 1.

メロメメ 倒す メミメメ ミメーミー 299

 \bullet By above results, there is no finite connected rack X of profile $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$.

 \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$

 \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$

イロメ イ御 メイヨメ イヨメー

重

 $2Q$

For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.

 \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$

メロメ メ倒 メメ ミメ メミメ

重

 $2Q$

- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.
	- The case when $\ell_k \nmid lcm(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\},$ is excluded by Proposition 1.

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.
	- The case when $\ell_k \nmid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, is excluded by Proposition 1.
	- The case when ℓ_k | $lcm(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1.

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.
	- The case when $\ell_k \nmid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, is excluded by Proposition 1.
	- The case when ℓ_k | $lcm(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1. One such profile is:

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.
	- The case when $\ell_k \nmid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, is excluded by Proposition 1.
	- The case when ℓ_k | $lcm(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1. One such profile is: $1^{m_0}\ell_1\ell_2\ell_3$ with $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p*,* q*,*r.

- \bullet By above results, there is no finite connected rack X of profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}$ with $\ell_1 \nmid \ell_2$. Therefore, Hayashi's conjecture is true for all finite connected racks and quandles with profiles $1^{m_0} \ell_1^{m_1} \ell_2^{m_2}.$
- For the profile $1^{m_0}\ell_1^{m_1}\ell_2^{m_2}\ell_3^{m_3}$, we have the following possibilities.
	- If $\ell_1, \ell_2 \mid \ell_3$ then Hayashi's conjecture is true.
	- If $\ell_i\nmid \ell_3$ or $\ell_i\nmid \ell_3$ and $\ell_j\mid \ell_3$ for distinct i,j in $\{1,2\}$, then we have further two cases to consider.
	- The case when $\ell_k \nmid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, is excluded by Proposition 1.
	- The case when ℓ_k | $lcm(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$, can not be excluded by Proposition 1. One such profile is: $1^{m_0}\ell_1\ell_2\ell_3$ with $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p*,* q*,*r. For example:

 $1^{m_0}6.10.15 = 1^{m_0}(2.3)(2.5)(3.5)$ with $(p, q, r) = (2, 3, 5)$.

メロトメ 伊 メ ミ メ ミ ドー ミー のなぐ

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

メロメ メ御 メメ ヨメメ ヨメー

重

 $2Q$

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

メロメ メ御 メメ ヨメメ ヨメー

重

 $2Q$

Sketch of Proof

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0} \ell_1 \ell_2 \ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t > 1$,

$$
X_t = \{y \in X \mid \varphi^t_x(y) = y\},\
$$

つのへ

and $X'_t = X_t \setminus X_1$ for all $t > 1$.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t > 1$,

$$
X_t = \{y \in X \mid \varphi^t_x(y) = y\},\
$$

and $X'_t = X_t \setminus X_1$ for all $t > 1$. Then X is the disjoint union of non-empty sets $X_1, X'_{pq}, X'_{pr}, X'_{qr}$.

Proposition 2

There is no finite connected crossed set with profile $1^{m_0}\ell_1\ell_2\ell_3$, where $(\ell_1, \ell_2, \ell_3) = (pq, pr, qr)$ for pairwise distinct primes p, q, r.

Sketch of Proof

Suppose that there exists a finite connected crossed set X with given profile. Let $x \in X$, $t > 1$,

$$
X_t = \{y \in X \mid \varphi^t_x(y) = y\},\
$$

and $X'_t = X_t \setminus X_1$ for all $t > 1$. Then X is the disjoint union of non-empty sets $X_1, X'_{pq}, X'_{pr}, X'_{qr}$. Now we have the following steps.

 X_t is a non-empty subrack of X . In particular,

$$
y \triangleright (X \setminus X_t) = X \setminus X_t \text{ for all } y \in X_t.
$$

 X_t is a non-empty subrack of X . In particular,

$$
y \triangleright (X \setminus X_t) = X \setminus X_t \text{ for all } y \in X_t.
$$

メタトメ ミトメ ミト

4 0 F

重

 $2QQ$

Step 2

For all $y\in X_{pq}^{\prime}$, there exists $z\in X_{pr}^{\prime}$, such that $y\rhd z\neq z$.

 X_t is a non-empty subrack of X . In particular,

$$
y \triangleright (X \setminus X_t) = X \setminus X_t \text{ for all } y \in X_t.
$$

Step 2

For all
$$
y \in X'_{pq}
$$
, there exists $z \in X'_{pr}$, such that $y \triangleright z \neq z$.

Step 3

Let $y\in X_{pq}'$ and $z\in X\setminus X_{pq}$ with $y\vartriangleright z\neq z.$ Let t be the smallest positive integer with $\varphi_y^t(z)=z$, then $t=pr$ or $t=qr$.

 X_t is a non-empty subrack of X . In particular,

$$
y \triangleright (X \setminus X_t) = X \setminus X_t \text{ for all } y \in X_t.
$$

Step 2

For all
$$
y \in X'_{pq}
$$
, there exists $z \in X'_{pr}$, such that $y \triangleright z \neq z$.

Step₃

Let $y\in X_{pq}'$ and $z\in X\setminus X_{pq}$ with $y\vartriangleright z\neq z.$ Let t be the smallest positive integer with $\varphi_y^t(z)=z$, then $t=pr$ or $t=qr$.

Step 4

Let
$$
y \in X'_{pq}
$$
. Then there exist $z \in X'_{pr}$, $f \in X'_{qr}$ such that $z \rhd f = y$ or $f \rhd z = y$.

Assume that $X_{\rho r}'$ and $X_{q r}'$ are subracks of X . Then $X_{\rho q}'$ is not a subrack of X.

Assume that $X_{\rho r}'$ and $X_{q r}'$ are subracks of X . Then $X_{\rho q}'$ is not a subrack of X.

 $2Q$

∢ 伊 ▶ -∢ ヨ ▶ -∢ ヨ ▶

Step 6

Let $y\in X'_{pq}$. Then there exist $z\in X'_{pr}$ and $f\in X'_{qr}$ with $y \rhd z \in X'_{qr}$, $y \rhd f \in X'_{pr}$.

Assume that $X_{\rho r}'$ and $X_{q r}'$ are subracks of X . Then $X_{\rho q}'$ is not a subrack of X .

 $2QQ$

Step 6

Let $y\in X'_{pq}$. Then there exist $z\in X'_{pr}$ and $f\in X'_{qr}$ with $y \rhd z \in X'_{qr}$, $y \rhd f \in X'_{pr}$.

Step 7

Let $y \in X'_{pq}$. Then $y \triangleright x \in X'_{pq}$.

Assume that $X_{\rho r}'$ and $X_{q r}'$ are subracks of X . Then $X_{\rho q}'$ is not a subrack of X .

Step 6

Let $y\in X'_{pq}$. Then there exist $z\in X'_{pr}$ and $f\in X'_{qr}$ with $y \rhd z \in X'_{qr}$, $y \rhd f \in X'_{pr}$.

Step 7

Let
$$
y \in X'_{pq}
$$
. Then $y \triangleright x \in X'_{pq}$.

Step 8

Let $y \in X'_{pq}$. Let $\varphi_y = \sigma_1 \sigma_2 \sigma_3$ be the decomposition of φ_y into the product of a $pq-, pr-,$ and qr −cycle. Then $supp(\sigma_1) \subseteq X_{pq}$ and $supp(\sigma_2), supp(\sigma_3) \subseteq X'_{pr} \cup X'_{qr}.$

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \rhd x \neq x$ and $\varphi_2^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y\triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \rhd z \in X_{\sf pr}' \cup X_{\sf qr}'$. If $y \rhd z \in X_{\sf pr}'$, then the entries of *pr*−cycle of φ _V_{\triangleright z belong to X_{pr} , by Step 8, in} contradiction to $y \rhd x \in X_{\sf pq}'$. Thus $y \rhd z \in X_{\sf qr}'$, which implies that $y \rhd X_{\sf pr}' \subseteq X_{\sf qr}'$ and $y \rhd X_{\sf qr}' \subseteq X_{\sf pr}'$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \rhd x \neq x$ and $\varphi_2^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y\triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \rhd z \in X_{\sf pr}' \cup X_{\sf qr}'$. If $y \rhd z \in X_{\sf pr}'$, then the entries of *pr*−cycle of $\varphi_{V\triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \rhd x \in X_{\sf pq}'$. Thus $y \rhd z \in X_{\sf qr}'$, which implies that $y \rhd X_{\sf pr}' \subseteq X_{\sf qr}'$ and $y \rhd X_{\sf qr}' \subseteq X_{\sf pr}'$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \rhd x \neq x$ and $\varphi_2^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y\triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \rhd z \in X_{\sf pr}' \cup X_{\sf qr}'$. If $y \rhd z \in X_{\sf pr}'$, then the entries of *pr*−cycle of φ _V_{\triangleright z belong to X_{pr} , by Step 8, in} contradiction to $y \rhd x \in X_{\sf pq}'$. Thus $y \rhd z \in X_{\sf qr}'$, which implies that $y \rhd X_{\sf pr}' \subseteq X_{\sf qr}'$ and $y \rhd X_{\sf qr}' \subseteq X_{\sf pr}'$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

By Proposition 2, there is no connected crossed set with profile 1m⁰ 6*.*10*.*15.

メロト メタト メミト メミト

É

つくい

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \rhd x \neq x$ and $\varphi_2^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y\triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \rhd z \in X_{\sf pr}' \cup X_{\sf qr}'$. If $y \rhd z \in X_{\sf pr}'$, then the entries of *pr*−cycle of $\varphi_{V\triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \rhd x \in X_{\sf pq}'$. Thus $y \rhd z \in X_{\sf qr}'$, which implies that $y \rhd X_{\sf pr}' \subseteq X_{\sf qr}'$ and $y \rhd X_{\sf qr}' \subseteq X_{\sf pr}'$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

- By Proposition 2, there is no connected crossed set with profile 1m⁰ 6*.*10*.*15.
- By Propositions 1, 2, and Corollary 1, Hayashi's conjecture is true for any connected crossed set X with $\varphi_x \in Aut(X)$ such that $supp(\varphi_x) < 31$.

Let $y \in X'_{pq}$ and $z \in X'_{pr}$, then $z \rhd x \neq x$ and $\varphi_2^{pr}(x) = x$, by Step 7. Therefore $\varphi_{y\triangleright z}^{pr}(y \triangleright x) = y \triangleright x$. Moreover, $y \triangleright x \in X'_{pq}$, by Step 7. Step 1 implies that $y \rhd z \in X_{\sf pr}' \cup X_{\sf qr}'$. If $y \rhd z \in X_{\sf pr}'$, then the entries of *pr*−cycle of $\varphi_{V\triangleright z}$ belong to X_{pr} , by Step 8, in contradiction to $y \rhd x \in X_{\sf pq}'$. Thus $y \rhd z \in X_{\sf qr}'$, which implies that $y \rhd X_{\sf pr}' \subseteq X_{\sf qr}'$ and $y \rhd X_{\sf qr}' \subseteq X_{\sf pr}'$ by symmetry. This is impossible since $|X'_{pr}| = pr \neq qr = |X'_{qr}|$.

Remarks

- By Proposition 2, there is no connected crossed set with profile 1m⁰ 6*.*10*.*15.
- By Propositions 1, 2, and Corollary 1, Hayashi's conjecture is true for any connected crossed set X with $\varphi_x \in Aut(X)$ such that $supp(\varphi_x) < 31$.
- Proposition 2 is a particular case of the following theorem.

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$
\ell_1 = \prod_{i=1}^r p_i^{a_i}, \ \ell_2 = \prod_{i=1}^r p_i^{b_i} \text{ and } \ell_3 = \prod_{i=1}^r p_i^{c_i},
$$

for non-negative integers a_i, b_i and c_i for all $1 \leq i \leq r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1,2,3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.
Obstruction on the Profile of a Connected Rack

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$
\ell_1 = \prod_{i=1}^r p_i^{a_i}, \ \ell_2 = \prod_{i=1}^r p_i^{b_i} \text{ and } \ell_3 = \prod_{i=1}^r p_i^{c_i},
$$

for non-negative integers a_i, b_i and c_i for all $1 \leq i \leq r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1,2,3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.

Obstruction on the Profile of a Connected Rack

Theorem

Let $p_1, p_2, ..., p_r$ be pairwise distinct primes for positive integer r. Let

$$
\ell_1 = \prod_{i=1}^r p_i^{a_i}, \ \ell_2 = \prod_{i=1}^r p_i^{b_i} \text{ and } \ell_3 = \prod_{i=1}^r p_i^{c_i},
$$

for non-negative integers a_i, b_i and c_i for all $1 \leq i \leq r$. Let $1 < \ell_1 < \ell_2 < \ell_3$, $\ell_1 \nmid \ell_3$, $\ell_2 \nmid \ell_3$ and $\ell_k \mid \text{lcm}(\ell_{k+1}, \ell_{k+2})$ (mod 3) for $k \in \{1, 2, 3\}$. Then there is no finite connected crossed set X with profile $1^{m_0}\ell_1\ell_2\ell_3$.

Questions, comments, suggestions???