Diagram induced topological properties of congruence lattices

Miroslav Ploščica

Šafárik's University, Košice

May 27, 2016

(中) (문) (문) (문) (문)

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

for given classes \mathcal{K} , \mathcal{L} determine if Con $\mathcal{K} = \text{Con } \mathcal{L}$ and, if Con $\mathcal{K} \nsubseteq \text{Con } \mathcal{L}$, determine

 $\operatorname{Crit}(\mathcal{K},\mathcal{L}) = \min\{\operatorname{card}(L_c) \mid L \in \operatorname{Con} \mathcal{K} \setminus \operatorname{Con} \mathcal{L}\}$

 $(L_c = \text{compact elements of } L)$

We are interested in the case when \mathcal{K} and \mathcal{L} are (congruence-distributive) varieties. For instance, $\operatorname{Crit}(\mathbf{N}_5, \mathbf{M}_3) = 5$, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{N}_5) = \operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) = \aleph_0$, $\operatorname{Crit}(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$, $\operatorname{Crit}(\mathbf{Maj}, \mathbf{Lat}) = \aleph_2$. ($\mathbf{N}_5, \mathbf{M}_3, \mathbf{M}_4$ are well-known lattice varieties, $\mathbf{Lat} =$ all lattices, $\mathbf{Maj} =$ all majority algebras.)

Theorem

(Gillibert) If \mathcal{K} , \mathcal{L} are finitely generated congruence-distributive varieties, then $\operatorname{Crit}(\mathcal{K}, \mathcal{L}) \leq \aleph_2$ or $\operatorname{Con} \mathcal{K} = \operatorname{Con} \mathcal{L}$.

All examples with critical point \aleph_2 are essentially based on the fact that the intesection of two compact congruences need not be compact.

イロト イポト イヨト イヨト

We say that a variety \mathcal{K} has Compact Intersection Property (CIP) if $\operatorname{Con}_{c} A$ is a lattice for every $A \in \mathcal{K}$.

Examples: distributive lattices, Stone algebras, vector spaces ...

Theorem

(Baker, Blok, Pigozzi) A finitely generated congruence-distributive variety \mathcal{K} has CIP iff every subalgebra of a subdirectly irreducible algebra in \mathcal{K} is subdirectly irreducible (or one-element).

・ロト ・得ト ・ヨト ・ヨト

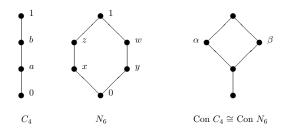
Theorem

If \mathcal{K} , \mathcal{L} are finitely generated congruence-distributive varieties with CIP, then $\operatorname{Crit}(\mathcal{K}, \mathcal{L}) \leq \aleph_1$ or $\operatorname{Con} \mathcal{K} = \operatorname{Con} \mathcal{L}$.

The upper bound case can occur.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

\aleph_1 example



・ロト ・聞ト ・ヨト ・ヨト

æ

Let C_4 be the 4-element chain depicted above endowed with an additional unary operation f defined by f(0) = 0, f(a) = b, f(b) = a, f(1) = 1. So, $C_4 = (\{a, b, 0, 1\}; \land, \lor, f, 0, 1)$. Let C_4 be the variety generated by C_4 . Similarly, let N_6 be the bounded lattice depicted above, endowed with *two* additional unary operations g (180° rotation) and h (vertical symmetry). So, $N_6 = (\{x, y, z, w, 0, 1\}; \land, \lor, g, h, 0, 1)$. Let \mathcal{N}_6 be the variety generated by N_6 .

Theorem

 $\operatorname{Crit}(\mathcal{N}_6, \mathcal{C}_4) = \aleph_1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Finding a link between two approaches in investigation of congruence lattices:

- liftability of semilattice diagrams;
- topological representation of distributive semilattices.

For any homomorphism of algebras $f: A \rightarrow B$ we define

 $\operatorname{Con}_c f:\ \operatorname{Con}_c A\to \operatorname{Con}_c B$

by $\alpha\mapsto \text{congruence generated by }\{(f(x),f(y))\mid (x,y)\in\alpha\}.$

Fact. Con_c f preserves \lor and 0, not necessarily \land .

For every commutative diagram \mathcal{A} of algebras we have a commutative diagram $\operatorname{Con}_{c} \mathcal{A}$ of $(\vee, 0)$ -semilattices.

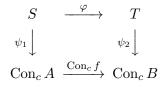
・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

Let

• $\varphi:\ S \to T$ be a homomorphism of $(\vee,0)\text{-semilattices};$

• $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ , if there are isomorphisms $\psi_1: S \to \operatorname{Con}_c A$, $\psi_2: T \to \operatorname{Con}_c B$ such that



commutes.

More generally: lifting of commutative diagrams

Let \mathcal{K} , \mathcal{L} be locally finite congruence-distributive varieties.

Theorem TFAE • $\operatorname{Con} \mathcal{K} \nsubseteq \operatorname{Con} \mathcal{L};$ • there exists a diagram of finite $(\lor, 0)$ -semilattices indexed by $\{0, 1\}^n$ (for some n) liftable in \mathcal{K} but not in \mathcal{L}

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) = (回 > (回 >)) = (回 > (回 >)) = (\Pi > (\cup >)) = (\Pi > (\square >)) = (\Pi > (

Let A belong to a finitely generated congruence-distributive variety with CIP. Then $\operatorname{Con}_c A$ is a distributive lattice and we can consider its dual Priestley space **X**. (We use the version for lattices with 0 but not necessarily with 1.)

- Points of the dual space correspond to (completely) meet-irreducible elements of Con A, so X = M(Con A).
- The order is inherited from $\operatorname{Con} A$.
- The topology is generated by the sets

$$M_{x,y} = \{ \alpha \mid (x,y) \in \alpha \}$$

and their complements.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

Theorem

Let \mathcal{V} be a finitely generated congruence-distributive variety with CIP. Let F be the free algebra in \mathcal{V} with \aleph_1 generators. Let \vec{S} be a diagram of finite distributive $(0, \vee)$ -semilattices indexed by a finite ordered set P having a smallest element $0 \in P$. The following conditions are equivalent.

- (i) There exists $A \in \mathcal{V}$ such that $\mathbf{X} = M(\operatorname{Con} A)$ is \vec{S} -nonseparable;
- (ii) $M(\operatorname{Con} F)$ is \vec{S} -nonseparable;
- (iii) \vec{S} has a lifting in \mathcal{V} .

イロト イポト イヨト イヨト

A simple example, instead of definition.

Let \vec{S} be a diagram of $(\vee, 0)$ -semilattices consisting of a single morphism $\varphi: \{0\} \to \{0, 1\}.$

- \$\vec{S}\$ in not liftable in the variety of Boolean algebras. Consequence: the largest element in the dual space (corresponding to 1-element congruence lattice) does not belong to the topological closure of the rest (points corresponding to 2-element lattices).
- S is liftable in the variety of distributive lattices. Consequence: the largest element in the dual space (corresponding to 1-element congruence lattice) can belong to the topological closure of the rest (points corresponding to 2-element lattices).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Well known free set theorem:

Theorem

(Hajnal) If $|X| \ge \aleph_1$, then for every function $\Phi : X \to [X]^{<\omega}$ there is a set $Y \subseteq X$ such that |Y| = |X| and $x \notin \Phi(y)$ whenever $x, y \in Y$, $x \neq y$.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

Free set theorem for diagrams

Let $(A_p \mid p \in P)$ be a family of nonempty sets, indexed by a finite poset P with a smallest element, such that $A_p \subseteq A_q$ whenever $p \leq q$. For a set X let $H(X, A_p)$ denote the set of all *surjective* mappings $X \to A_p$

Theorem

If $|X| \ge \aleph_1$, then for every function

supp :
$$\bigcup_{p \in P} H(X, A_p) \to [X]^{<\omega}$$

there are $h_p \in H(X, A_p)$ such that

$$h_q \upharpoonright \operatorname{supp} h_p = h_p \upharpoonright \operatorname{supp} h_p$$

for every p < q.

(A diagram version of the free set theorem.)

Thank you for attention.

ploscica.science.upjs.sk

Miroslav Ploščica Diagram induced topological properties of congruence latti