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Congruence lattices

Problem. For a given class K of algebras describe Con K =all
lattices isomorphic to Con A for some A ∈ K.

Or, at least,

for given classes K, L determine if Con K = Con L
and, if Con K * Con L, determine

Crit(K,L) = min{card(Lc) | L ∈ ConK \ ConL}

(Lc = compact elements of L)
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Some critical points

We are interested in the case when K and L are
(congruence-distributive) varieties. For instance,
Crit(N5,M3) = 5,
Crit(M3,N5) = Crit(M3,D) = ℵ0,
Crit(M4,M3) = ℵ2,
Crit(Maj,Lat) = ℵ2.
(N5, M3, M4 are well-known lattice varieties, Lat = all lattices,
Maj = all majority algebras.)
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Upper bound on critical points

Theorem
(Gillibert) If K, L are finitely generated congruence-distributive
varieties, then Crit(K,L) ≤ ℵ2 or ConK = ConL.

All examples with critical point ℵ2 are essentially based on the fact
that the intesection of two compact congruences need not be
compact.
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CIP varieties

We say that a variety K has Compact Intersection Property (CIP) if
ConcA is a lattice for every A ∈ K.

Examples: distributive lattices, Stone algebras, vector spaces ...

Theorem
(Baker, Blok, Pigozzi) A finitely generated congruence-distributive
variety K has CIP iff every subalgebra of a subdirectly irreducible
algebra in K is subdirectly irreducible (or one-element).
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Upper bound for CIP

Theorem
If K, L are finitely generated congruence-distributive varieties with
CIP, then Crit(K,L) ≤ ℵ1 or ConK = ConL.

The upper bound case can occur.
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ℵ1 example
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Additional operations

Let C4 be the 4-element chain depicted above endowed with an
additional unary operation f defined by f(0) = 0, f(a) = b,
f(b) = a, f(1) = 1. So, C4 = ({a, b, 0, 1};∧,∨, f, 0, 1). Let C4 be
the variety generated by C4.
Similarly, let N6 be the bounded lattice depicted above, endowed
with two additional unary operations g (180◦ rotation) and h
(vertical symmetry). So, N6 = ({x, y, z, w, 0, 1};∧,∨, g, h, 0, 1).
Let N6 be the variety generated by N6.

Theorem
Crit(N6, C4) = ℵ1.
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Method

Finding a link between two approaches in investigation of
congruence lattices:

liftability of semilattice diagrams;
topological representation of distributive semilattices.
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Conc functor

For any homomorphism of algebras f : A→ B we define

Conc f : ConcA→ ConcB

by
α 7→ congruence generated by {(f(x), f(y)) | (x, y) ∈ α}.

Fact. Conc f preserves ∨ and 0, not necessarily ∧.

For every commutative diagram A of algebras we have a
commutative diagram ConcA of (∨, 0)-semilattices.
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Lifting of semilattice morphisms

Let
ϕ : S → T be a homomorphism of (∨, 0)-semilattices;
f : A→ B be a homomorphisms of algebras.

We say that f lifts ϕ, if there are isomorphisms ψ1 : S → ConcA,
ψ2 : T → ConcB such that

S
ϕ−−−−→ T

ψ1

y ψ2

y
ConcA

Conc f−−−−→ ConcB

commutes.
More generally: lifting of commutative diagrams
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Results of P. Gillibert

Let K, L be locally finite congruence-distributive varieties.

Theorem
TFAE

ConK * ConL;
there exists a diagram of finite (∨, 0)-semilattices indexed by
{0, 1}n (for some n) liftable in K but not in L
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Priestley duality

Let A belong to a finitely generated congruence-distributive variety
with CIP. Then ConcA is a distributive lattice and we can consider
its dual Priestley space X. (We use the version for lattices with 0
but not necessarily with 1.)

Points of the dual space correspond to (completely)
meet-irreducible elements of ConA, so X = M(ConA).
The order is inherited from ConA.
The topology is generated by the sets

Mx,y = {α | (x, y) ∈ α}

and their complements.
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Diagrams versus topology

Theorem
Let V be a finitely generated congruence-distributive variety with
CIP. Let F be the free algebra in V with ℵ1 generators. Let ~S be a
diagram of finite distributive (0,∨)-semilattices indexed by a finite
ordered set P having a smallest element 0 ∈ P . The following
conditions are equivalent.
(i) There exists A ∈ V such that X = M(ConA) is

~S-nonseparable;
(ii) M(ConF ) is ~S-nonseparable;
(iii) ~S has a lifting in V.
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What is ~S-separability?

A simple example, instead of definition.
Let ~S be a diagram of (∨, 0)-semilattices consisting of a single
morphism ϕ : {0} → {0, 1}.

~S in not liftable in the variety of Boolean algebras.
Consequence: the largest element in the dual space
(corresponding to 1-element congruence lattice) does not
belong to the topological closure of the rest (points
corresponding to 2-element lattices).
~S is liftable in the variety of distributive lattices. Consequence:
the largest element in the dual space (corresponding to
1-element congruence lattice) can belong to the topological
closure of the rest (points corresponding to 2-element lattices).

Miroslav Ploščica Diagram induced topological properties of congruence lattices



How ℵ1 got there

Well known free set theorem:

Theorem
(Hajnal) If |X| ≥ ℵ1, then for every function Φ : X → [X]<ω

there is a set Y ⊆ X such that |Y | = |X| and x /∈ Φ(y) whenever
x, y ∈ Y , x 6= y.
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Free set theorem for diagrams

Let (Ap | p ∈ P ) be a family of nonempty sets, indexed by a finite
poset P with a smallest element, such that Ap ⊆ Aq whenever
p ≤ q. For a set X let H(X,Ap) denote the set of all surjective
mappings X → Ap

Theorem
If |X| ≥ ℵ1, then for every function

supp :
⋃
p∈P

H(X,Ap)→ [X]<ω

there are hp ∈ H(X,Ap) such that

hq� supphp = hp� supphp

for every p < q.

(A diagram version of the free set theorem.)
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Thanks

Thank you for attention.

ploscica.science.upjs.sk

Miroslav Ploščica Diagram induced topological properties of congruence lattices


