Algebras with a central semilattice operation

Agata Pilitowska

Faculty of Mathematics and Information Science, Warsaw University of Technology

AAA92 Prague, May 27-29, 2016

Semilattice ordered algebras

 \mathcal{V} - a subvariety of \mho

Definition

An algebra $(A, \Omega, +)$ is called a *semilattice ordered* \mathcal{V} -algebra (SLO-algebra), if (A, +) is a (join) semilattice, $(A, \Omega) \in \mathcal{V}$ and the operations from the set Ω distribute over the operation +.

The operation ω distributes over + if for any $x_1, \ldots, x_i, y_i, \ldots, x_n \in A$

$$\omega(x_1,\ldots,x_i+y_i,\ldots,x_n) = \omega(x_1,\ldots,x_i,\ldots,x_n) + \omega(x_1,\ldots,y_i,\ldots,x_n),$$

for any $1 \le i \le n$

Distributive lattices

- Distributive lattices
- Semirings with an idempotent additive reduct

- Distributive lattices
- Semirings with an idempotent additive reduct
- Extended power algebras: $(\mathcal{P}_{>0}(A), \Omega, \cup)$

 (A, Ω) - an algebra

 $\mathcal{P}_{>0}(A)$ - the family of all non-empty subsets of A

 $\omega: {\mathcal P}_{>0}(A)^n \to {\mathcal P}_{>0}(A)$ - the complex operation:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}$$

- Distributive lattices
- Semirings with an idempotent additive reduct
- Extended power algebras: (P_{>0}(A), Ω, ∪) (A, Ω) - an algebra
 P_{>0}(A) - the family of all non-empty subsets of A ω : P_{>0}(A)ⁿ → P_{>0}(A) - the complex operation:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}$$

• Modals = semilattice ordered modes (idempotent and entropic algebras)

$$\omega(x, \dots, x) = x,$$

$$\omega(\phi(x_{11}, \dots, x_{n1}), \dots, \phi(x_{1m}, \dots, x_{nm})) =$$

$$\phi(\omega(x_{11}, \dots, x_{1m}), \dots, \omega(x_{n1}, \dots, x_{nm})),$$

for every *m*-ary $\omega \in \Omega$ and *n*-ary $\phi \in \Omega$

Semilattice modes = entropic modals

Entropic modals = modes with a semilattice operation = modals which satisfy:

$$\omega(x_1+y_1,\ldots,x_n+y_n)=\omega(x_1,\ldots,x_n)+\omega(y_1,\ldots,y_n),$$

for every *n*-ary $\omega \in \Omega$

Semilattice modes = entropic modals

Entropic modals = modes with a semilattice operation = modals which satisfy:

$$\omega(x_1+y_1,\ldots,x_n+y_n)=\omega(x_1,\ldots,x_n)+\omega(y_1,\ldots,y_n),$$

for every *n*-ary $\omega \in \Omega$

Theorem [K.Kearnes]

To each variety \mathcal{V} of semilattice modes one can associate a commutative semiring $\mathbf{R}(\mathcal{V})$, whose structure determines many of the properties of the variety.

The semiring associated with idempotent SLO algebras

S - a variety of idempotent SLO algebras $(S, \Omega, +)$ $F_{\mathcal{S}}(x, y)$ - the free S-algebra on two generators x and y $U(S) = \{t \in F_{\mathcal{S}}(x, y) \mid t \ge y\}$

•: $F_{\mathcal{S}}(x, y) \times F_{\mathcal{S}}(x, y) \to F_{\mathcal{S}}(x, y); \quad (s, t) \mapsto s \bullet t(x, y) := s(t(x, y), y)$

The semiring associated with idempotent SLO algebras

S - a variety of idempotent SLO algebras $(S, \Omega, +)$ $F_{\mathcal{S}}(x, y)$ - the free S-algebra on two generators x and y $U(S) = \{t \in F_{\mathcal{S}}(x, y) \mid t \ge y\}$

$$\bullet: F_{\mathfrak{S}}(x, y) \times F_{\mathfrak{S}}(x, y) \to F_{\mathfrak{S}}(x, y); \ (s, t) \mapsto s \bullet t(x, y) := s(t(x, y), y)$$

Theorem

The algebra $\mathbf{U}(S) = (U(S), \bullet, +, 1 = x + y, y)$ is a semiring satisfying 1 + r = 1.

The semiring associated with idempotent SLO algebras

S - a variety of idempotent SLO algebras $(S, \Omega, +)$ $F_{S}(x, y)$ - the free S-algebra on two generators x and y $U(S) = \{t \in F_{S}(x, y) \mid t \ge y\}$

$$\bullet: F_{\mathfrak{S}}(x, y) \times F_{\mathfrak{S}}(x, y) \to F_{\mathfrak{S}}(x, y); \ (s, t) \mapsto s \bullet t(x, y) := s(t(x, y), y)$$

Theorem

The algebra $\mathbf{U}(S) = (U(S), \bullet, +, 1 = x + y, y)$ is a semiring satisfying 1 + r = 1.

Remark

Let S be a variety of modals. The semiring U(S) is commutative.

Free idempotent SLO algebras

 $(F_{\mathcal{V}}(X), \Omega)$ - the free algebra over a set *X* in the variety $\mathcal{V} \subseteq \mathcal{O}$ $\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X)$ - the set of all finite non-empty subsets of $F_{\mathcal{V}}(X)$ $\mathcal{S}_{\mathcal{V}}$ - the variety of semilattice ordered \mathcal{V} -algebras

Theorem (A.P. + A.Zamojska-Dzienio)

The semilattice ordered algebra $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathcal{S}_{\mathcal{V}}$ if and only if $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}}(X),\Omega,\cup) \in \mathcal{S}_{\mathcal{V}}$.

Free idempotent SLO algebras

 $(F_{\mathcal{V}}(X), \Omega)$ - the free algebra over a set *X* in the variety $\mathcal{V} \subseteq \mathcal{O}$ $\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X)$ - the set of all finite non-empty subsets of $F_{\mathcal{V}}(X)$ $\mathcal{S}_{\mathcal{V}}$ - the variety of semilattice ordered \mathcal{V} -algebras

Theorem (A.P. + A.Zamojska-Dzienio)

The semilattice ordered algebra $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathcal{S}_{\mathcal{V}}$ if and only if $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}}(X),\Omega,\cup) \in \mathcal{S}_{\mathcal{V}}$.

Theorem (A.P. + A.Zamojska-Dzienio)

 \mathcal{V} - a linear variety (a variety defined by some linear identities) The extended power algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $S_{\mathcal{V}}$.

Free idempotent SLO algebras

 $(F_{\mathcal{V}}(X), \Omega)$ - the free algebra over a set *X* in the variety $\mathcal{V} \subseteq \mathcal{O}$ $\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X)$ - the set of all finite non-empty subsets of $F_{\mathcal{V}}(X)$ $\mathcal{S}_{\mathcal{V}}$ - the variety of semilattice ordered \mathcal{V} -algebras

Theorem (A.P. + A.Zamojska-Dzienio)

The semilattice ordered algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathcal{S}_{\mathcal{V}}$ if and only if $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup) \in \mathcal{S}_{\mathcal{V}}$.

Theorem (A.P. + A.Zamojska-Dzienio)

 \mathcal{V} - a linear variety (a variety defined by some linear identities) The extended power algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $S_{\mathcal{V}}$.

Theorem (A.P. + A.Zamojska-Dzienio)

 $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega)\in\mathcal{V}$ if and only if \mathcal{V} is linear.

Idempotent replica

 JV - a linear and idempotent variety of $\Omega\text{-algebras}$

Corollary

The idempotent replica of $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{IV}}(X), \Omega, \cup)$ *is free over a set X in the variety* $S_{\mathcal{IV}}$.

The idempotent replica of $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{W}}(X), \Omega, \cup)$ = the quotient algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{W}}(X)/\varrho, \Omega, \cup)$, where ϱ is the replica congruence relation

 $\varrho := \bigcap \{ \phi \in Con(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{IV}}(X),\Omega,\cup) \mid (\mathcal{P}^{<\omega}_{>0}F_{\mathcal{IV}}(X)/\phi,\Omega,\cup) \in \mathbb{S}_{\mathcal{IV}} \}$

Example - Semilattice ordered semigroups

 (S, \cdot) - a semigroup $S^1 := S \cup \{1\}$ (1 is a neutral element)

Definition

 $A \subseteq S$ is 2-closed if for each $p, q \in S^1$ and $u_1, u_2 \in S$

 $pu_1q, pu_2q \in A \Rightarrow pu_1u_2q \in A.$

Example - Semilattice ordered semigroups

 (S, \cdot) - a semigroup $S^1 := S \cup \{1\}$ (1 is a neutral element)

Definition

 $A \subseteq S$ is 2-closed if for each $p, q \in S^1$ and $u_1, u_2 \in S$

 $pu_1q, pu_2q \in A \Rightarrow pu_1u_2q \in A.$

 $\ensuremath{\mathbb{JSG}}\xspace$ - the variety of idempotent semigroups

Theorem (X.Z.Zhao)

Idempotent replica congruence of $(\mathcal{P}^{<\omega}_{>0}F_{\mathfrak{ISG}}(X), \Omega, \cup)$: for $Q, R \in \mathcal{P}^{<\omega}_{>0}F_{\mathfrak{ISG}}(X)$

$$Q \varrho R \Leftrightarrow [Q]_2 = [R]_2.$$

 $[X]_2 = 2$ -closed subset generated by X

 ${\mathcal M}$ - a variety of $\Omega\text{-modes}$

Theorem (A.Romanowska, J.D.H.Smith)

Idempotent replica congruence of $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{M}}(X), \Omega, \cup)$: for $Q, R \in \mathcal{P}^{<\omega}_{>0}F_{\mathcal{M}}(X)$

 $Q \alpha R \Leftrightarrow \langle Q \rangle = \langle R \rangle.$

 $\langle X \rangle$ = the subalgebra generated by *X*

$\mathcal{D}_{0,2}$ - the variety of differential groupoids

xx = x $xy \cdot uv = xu \cdot yv$ $xy \cdot z = xy.$

 $F_{\mathcal{D}_{0,2}}(x, y) = \{x, y, xy, yx\}$ - the free differential groupoid on two generators x and y

	$\cdot x$	У	xy	yx
2	x x	xy	x	xy
y	v yx	y y	yх	У
x	$y \mid xy$	<i>x</i>	xy	x
<i>y</i> .	$x \mid y$	yх	у	yх

The idempotent replica of $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{D}_{0,2}}(x,y),\cdot,\cup)$ has 7 elements: $\{x\}/\alpha, \{y\}/\alpha, \{xy\}/\alpha, \{yx\}/\alpha, \{x,xy\}/\alpha, \{y,yx\}/\alpha, \{x,y\}/\alpha$.

The semiring $\mathbf{U}(S_{\mathcal{D}_{0,2}})$

The semiring $U(S_{\mathcal{D}_{0,2}})$ associated with the variety $S_{\mathcal{D}_{0,2}}$ has 3 elements:

•
$$1 = \{x, y, xy, yx\} = \{x\} + \{y\}$$

• $\{y, yx\} = \{y\} + \{yx\}$
• $0 = \{y\}$

•	0	$\{y, yx\}$	1
0	0	0	0
$\{y, yx\}$	0	0	$\{y, yx\}$
1	0	$\{y, yx\}$	1

Theorem [K.Kearnes]

The lattice of subvarieties of a variety of semilattice modes \mathcal{V} is dually isomorphic to the congruence lattice $Con\mathbf{R}(\mathcal{V})$ of the semiring $\mathbf{R}(\mathcal{V})$ associated with \mathcal{V} .

Theorem [K.Kearnes]

The lattice of subvarieties of a variety of semilattice modes \mathcal{V} is dually isomorphic to the congruence lattice $Con\mathbf{R}(\mathcal{V})$ of the semiring $\mathbf{R}(\mathcal{V})$ associated with \mathcal{V} .

Central semilattice operation

$$\omega(x_1+y_1,\ldots,x_n+y_n)=\omega(x_1,\ldots,x_n)+\omega(y_1,\ldots,y_n)$$

for every *n*-ary $\omega \in \Omega$

Theorem [K.Kearnes]

The lattice of subvarieties of a variety of semilattice modes \mathcal{V} is dually isomorphic to the congruence lattice $Con\mathbf{R}(\mathcal{V})$ of the semiring $\mathbf{R}(\mathcal{V})$ associated with \mathcal{V} .

Central semilattice operation

$$\omega(x_1+y_1,\ldots,x_n+y_n)=\omega(x_1,\ldots,x_n)+\omega(y_1,\ldots,y_n),$$

for every *n*-ary $\omega \in \Omega$

 S_{TV} = a variety of idempotent SLO algebras with a central semilattice operation

Theorem

 $S_{\mathcal{IV}}$ = a variety of SLO algebras with a central semilattice operation The lattice of subvarieties of a variety $S_{\mathcal{IV}}$ is dually isomorphic to the congruence lattice $ConU(S_{\mathcal{IV}})$ of the semiring $U(S_{\mathcal{IV}})$ associated with $S_{\mathcal{IV}}$.

 \mathcal{V} - a variety

 $S_{\mathcal{IV}}$ - a variety of idempotent SLO $\mathcal V\text{-algebras}$ with a central semilattice operation

 \mathcal{V} - a variety

 $S_{\mathcal{IV}}$ - a variety of idempotent SLO $\mathcal{V}\text{-algebras}$ with a central semilattice operation

• $S_{\mathcal{IV}}$ satisfies each identity which is true in \mathcal{V}

 \mathcal{V} - a variety

 $S_{\mathcal{IV}}$ - a variety of idempotent SLO $\mathcal V\text{-algebras}$ with a central semilattice operation

- $S_{\mathcal{IV}}$ satisfies each identity which is true in \mathcal{V}
- (A, Ω, +) a subdirectly irreducible S_{JV}-algebra ⇒
 (A, Ω, +) has the least element 0.

Thank you for your attention.