Complexity classification for the binary branching semilinear-order constraint satisfaction problems

> Trung Van Pham Joint work with Manuel Bodirsky

> > Institut für Computersprachen Theory and Logic Group Technische Universität Wien

92th Arbeitstagung Allgemeine Algebra, Prague

 QQ

BBS-SAT (Ψ) as a CSP

- [Complexity classification](#page-20-0)
	- **[Main result](#page-21-0)**
	- [Algebraic tools](#page-30-0)

4 0 8

化重变 化重

 2990

A partial order $(P; \leq)$ is called semilinear order if for any $a, b \in P$ the set $({x \in P : x \ge a \land x \ge b}; \le)$ is a linear order.

4 D F

 2990

A partial order $(P; \leq)$ is called semilinear order if for any $a, b \in P$ the set $({x \in P : x \ge a \land x \ge b}; \le)$ is a linear order. A semi-linear order is called binary branching if

• below every element there are two incomparable elements.

 Ω

A partial order $(P; \leq)$ is called semilinear order if for any $a, b \in P$ the set $({x \in P : x \ge a \land x \ge b}; \le)$ is a linear order. A semi-linear order is called binary branching if

- **•** below every element there are two incomparable elements.
- for any three incomparable elements

A partial order $(P; \leq)$ is called semilinear order if for any $a, b \in P$ the set $({x \in P : x \ge a \land x \ge b}; \le)$ is a linear order. A semi-linear order is called binary branching if

- **•** below every element there are two incomparable elements.
- \bullet for any three incomparable elements there is an element of P such that it is greater than two of the three and incomparable to the third.

BBS-SAT(Ψ)

Let $\Psi := {\psi_1, \psi_2, \ldots, \psi_k}$ be a set of first-order formulas over language $\{\leq\}$. The constraint satisfaction problem BBS-SAT(Ψ) is defined as follows.

Instance: A set of variables V and a formula $\Phi := \phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n$ where ϕ_i is in Ψ by substituting some variables from V.

Question: Is there some branching binary semilinear order that contains nodes V and satisfies the formula Φ?

 2990

イロメ イ何メ イヨメ イヨメー ヨ

Let $\Psi := \{x > y \land x \perp z\}$, where $x \perp z := \neg(x \leq z \lor z \leq x)$. Consider an input $(u > w \wedge x \perp w) \wedge (u > y \wedge y \perp z) \wedge (v > z \wedge z \perp y).$

Trung Van Pham (TU Wien) [CSPs for reducts of](#page-0-0) $(S_2; <)$ $(S_2; <)$ $(S_2; <)$ 29.05.2016 5 / 14

メロメ メ母メ メミメ メミメ

 2990

イロト イ母 トイヨ トイヨ トーヨー

 η an

Partially-ordered time and branching time are well-studied models in reasoning about temporal knowledge.

K ロ ▶ K 何 ▶

化重新润滑

 2990

- Partially-ordered time and branching time are well-studied models in reasoning about temporal knowledge.
- A complete complexity classfication for partially-ordered time model has been obtained by Kompatscher and Pham (2016).

(□) (n)

 Ω

- 4 重 8 - 4 重 8

- Partially-ordered time and branching time are well-studied models in reasoning about temporal knowledge.
- A complete complexity classfication for partially-ordered time model has been obtained by Kompatscher and Pham (2016).
- Some partial complexity results for branching time model were obtained by Broxval, Jonsson, Coppersmith and Winograd.

 Ω

- イヨメ イヨメ

- Partially-ordered time and branching time are well-studied models in reasoning about temporal knowledge.
- A complete complexity classfication for partially-ordered time model has been obtained by Kompatscher and Pham (2016).
- Some partial complexity results for branching time model were obtained by Broxval, Jonsson, Coppersmith and Winograd.
- We present here a complete complexity classification for branching time model.

 Ω

∢ロト ∢母ト ∢きト ∢きト

[Constraint satisfaction problems on binary branching semi-linear order](#page-1-0)

2 BBS-SAT(Ψ) as a CSP

[Complexity classification](#page-20-0)

- **[Main result](#page-21-0)**
- [Algebraic tools](#page-30-0)

← ロ ▶ → イ 冊

イヨメ イヨメ

 2990

Proposition

There is a unique binary branching semilinear order (\mathbb{S}_2 ; \leq) (up to isomorphism) that satisfies the following conditions.

- **•** dense if for every $x, y \in \mathbb{S}_2$ such that $x < y$ there is $z \in \mathbb{S}_2$ such that $x < z < y$.
- unbounded if for every $x \in \mathbb{S}_2$ there are y, z such that $y < x < z$.
- without joins if for every $x, y \leq z$ and x, y incomparable, there is $u \in \mathbb{S}_2$ such that $x, y \leq u$ and $u \leq z$.

 Ω

Proposition

There is a unique binary branching semilinear order (\mathbb{S}_2 ; \leq) (up to isomorphism) that satisfies the following conditions.

- dense if for every $x, y \in \mathbb{S}_2$ such that $x < y$ there is $z \in \mathbb{S}_2$ such that $x < z < y$.
- unbounded if for every $x \in \mathbb{S}_2$ there are y, z such that $y < x < z$.
- without joins if for every $x, y \leq z$ and x, y incomparable, there is $u \in \mathbb{S}_2$ such that $x, y \leq u$ and $u \leq z$.

つへへ

Important properties of $(S_2; <)$

Every finite binary branching semilinear order is embedded into $(S_2; \leq)$

From formulas to relations

Let $\Psi := \{\psi_1, \psi_2, \dots, \psi_m\}$ be a set of first-order formulas over language $\{\leq\}$. For each ψ_i let $R_{\psi_i} := \{x \in \mathbb{S}_2^k : \psi_i(x)$ holds in $(\mathbb{S}_2; \leq)\}$, where k is the arity of ψ_i . The structure $(\mathbb{S}_2; R_{\psi_1}, R_{\psi_2}, \ldots, R_{\psi_m})$ is called a reduct of $(S_2; \leq).$

BBS-SATs as CSPs

The problem BBS-SAT(Ψ) can be reformulated as a CSP as follows. **Instance:** A finite relational structure A over language ${R_{\psi_1}, R_{\psi_2}, \ldots, R_{\psi_m}}.$ **Question:** Is there a homomorphism from A to $(\mathbb{S}_2; R_{\psi_1}, R_{\psi_2}, \ldots, R_{\psi_m})$?

 2990

イロト イ母 トイヨ トイヨ トーヨ

[Constraint satisfaction problems on binary branching semi-linear order](#page-1-0)

BBS-SAT (Ψ) as a CSP

- 3 Complexity classification
	- **O** [Main result](#page-21-0)
	- [Algebraic tools](#page-30-0)

4. 0. 3. 4.

 QQ

Important relations

- $B := \{(x, y, z) \in \mathbb{S}_2^3 : x < y < z \lor z < y < x \lor x < y \land y \bot z \lor z < x \land y \bot z \land z \land z \}$ $y \wedge x \perp y$.
- $N := \{(x, y, z) \in \mathbb{S}_2^3 : x|yz \vee z|xy\}$, where $x|yz := \exists t.x \bot t \land t > y \land t > z.$

•
$$
T_3 := \{(x, y, z) \in \mathbb{S}_2^3 : x = y > z \lor x = z > y\}.
$$

Lemma

 $CSP(B), CSP(N)$ and $CSP(\mathbb{T}_3)$ are NP-complete.

(□) (n)

 $2Q$

医阿里氏阿里氏征量

A Horn formula in $(S_2; \leq)$ is a conjunction of the formulas of the form

$$
x_1 \neq y_1 \vee x_2 \neq y_2 \vee \cdots \vee x_k \neq y_k \vee
$$

$$
\vee T(z_1, z_2, \ldots, z_m) \vee \bigvee_{b \in B \setminus \{0,1\}} \{z_i : b_i = 0\} |\{z_i : b_i = 1\},
$$

of the form

$$
x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_k \neq y_k \vee
$$

\n
$$
T(z_1, z_2, \ldots, z_m) \wedge (z_1 > z_m \vee z_2 > z_m \vee \cdots \vee z_{m-1} > z_m)
$$

\n
$$
\vee \bigvee_{b \in B \setminus \{0,1\}} \{z_i : b_i = 0\} |\{z_i : b_i = 1\},
$$

or of the form

$$
x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_k \neq y_k \vee z_1 = z_2 = \cdots = z_m
$$

$$
\vee T(z_1, z_2, \ldots, z_m) \wedge (z_1 > z_m \vee z_2 > z_m \vee \cdots \vee z_{m-1} > z_m)
$$

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

• End(Γ) contains a function whose range induces a chain in $(S_2; \leq)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{Q}; \leq)$.

 Ω

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

• End(Γ) contains a function whose range induces a chain in $(S_2; \leq)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{Q}; \leq)$. Done!

 Ω

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

- **•** End(Γ) contains a function whose range induces a chain in $(\mathbb{S}_2; <)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{O}; <)$. Done!
- \bullet End(Γ) contains a function whose range induces an antichain in $(S_2; \leq)$, and $CSP(\Gamma)$ is a reduced to a CSP for a reduct of $(\mathbb{L}; C)$.

つへへ

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

- **•** End(Γ) contains a function whose range induces a chain in $(\mathbb{S}_2; <)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{O}; <)$. Done!
- \bullet End(Γ) contains a function whose range induces an antichain in $(S_2; \leq)$, and $CSP(\Gamma)$ is a reduced to a CSP for a reduct of $(\mathbb{L}; C)$. Done!

 Ω

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

- **•** End(Γ) contains a function whose range induces a chain in $(\mathbb{S}_2; <)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{O}; <)$. Done!
- \bullet End(Γ) contains a function whose range induces an antichain in $(S_2; <)$, and $CSP(\Gamma)$ is a reduced to a CSP for a reduct of (L; C). Done!
- End(Γ) = $\overline{\text{Aut}}(\mathbb{S}_2; B)$ and CSP(B) is reduced to CSP(Γ). Thus $CSP(\Gamma)$ is NP-complete.

 Ω

∢ロト ∢母ト ∢きト ∢きト

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

- End(Γ) contains a function whose range induces a chain in $(S_2; \leq)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{O}; <)$. Done!
- \bullet End(Γ) contains a function whose range induces an antichain in $(S_2; <)$, and $CSP(\Gamma)$ is a reduced to a CSP for a reduct of (L; C). Done!
- $\text{End}(\Gamma) = \overline{\text{Aut}(\mathbb{S}_2; \mathbb{B})}$ and $\text{CSP}(\mathbb{B})$ is reduced to $\text{CSP}(\Gamma)$. Thus $CSP(\Gamma)$ is NP-complete.
- End(Γ) = $\overline{\text{Aut}(\mathbb{S}_2;<)}$, and CSP(N) or CSP(T₃) is reduced to $CSP(\Gamma)$. Thus $CSP(\Gamma)$ is NP-complete.

 Ω

メロメ メ部メ メミメ メミメ

Let Γ be a reduct of $(\mathbb{S}_2; \leq)$. Then one of the following applies.

- **•** End(Γ) contains a function whose range induces a chain in $(\mathbb{S}_2; <)$, and $CSP(\Gamma)$ is reduced to a CSP for a reduct of $(\mathbb{O}; <)$. Done!
- \bullet End(Γ) contains a function whose range induces an antichain in $(S_2; <)$, and $CSP(\Gamma)$ is a reduced to a CSP for a reduct of (L; C). Done!
- $\text{End}(\Gamma) = \overline{\text{Aut}(\mathbb{S}_2; \mathbb{B})}$ and $\text{CSP}(\mathbb{B})$ is reduced to $\text{CSP}(\Gamma)$. Thus $CSP(\Gamma)$ is NP-complete.
- End(Γ) = $\overline{\text{Aut}(\mathbb{S}_2;<)}$, and CSP(N) or CSP(T₃) is reduced to $CSP(\Gamma)$. Thus $CSP(\Gamma)$ is NP-complete.
- \bullet End(Γ) = Aut(\mathbb{S}_2 ; \leq) and every relation in Γ can be defined by a Horn formula, and $CSP(\Gamma)$ can be solved in polynomial time.

 Ω

イロト イ何 トイヨ トイヨ トーヨ

Tools for complexity clasification

The following tools are used to classify the complexity of BBS-SAT (Ψ) :

- **Galois connection between Polymorphism clone and primitive positive** definability of an ω -categorical structure (Bodirsky and Nešetřil).
- Leeb's Ramsey theorem for rooted trees.
- Canonicalization theorem invented by Bodirsky, Pinsker and Tsankov.

 Ω

Tools for complexity clasification

The following tools are used to classify the complexity of BBS-SAT (Ψ) :

- **Galois connection between Polymorphism clone and primitive positive** definability of an ω -categorical structure (Bodirsky and Nešetřil).
- Leeb's Ramsey theorem for rooted trees.
- Canonicalization theorem invented by Bodirsky, Pinsker and Tsankov.

Thank you for the attention!

つへへ