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CSPs on binary branching semilinear order

semi-linear order

A partial order (P ;≤) is called semilinear order if for any a, b ∈ P the set
({x ∈ P : x ≥ a ∧ x ≥ b};≤) is a linear order.
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A partial order (P ;≤) is called semilinear order if for any a, b ∈ P the set
({x ∈ P : x ≥ a ∧ x ≥ b};≤) is a linear order. A semi-linear order is called
binary branching if

below every element there are two incomparable elements.

for any three incomparable elements there is an element of P such
that it is greater than two of the three and incomparable to the third.
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CSPs on binary branching semilinear order

BBS-SAT(Ψ)

Let Ψ := {ψ1, ψ2, . . . , ψk} be a set of first-order formulas over language
{≤}. The constraint satisfaction problem BBS-SAT(Ψ) is defined as
follows.
Instance: A set of variables V and a formula Φ := φ1 ∧ φ2 ∧ ∙ ∙ ∙ ∧ φn,
where φi is in Ψ by substituting some variables from V .
Question: Is there some branching binary semilinear order that contains
nodes V and satisfies the formula Φ?
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CSPs on binary branching semilinear order

Example

Let Ψ := {x > y ∧ x⊥z}, where x⊥z := ¬(x ≤ z ∨ z ≤ x). Consider an
input (u > w ∧ x⊥w) ∧ (u > y ∧ y⊥z) ∧ (v > z ∧ z⊥y).
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CSPs on binary branching semilinear order

Partially-ordered time and branching time are well-studied models in
reasoning about temporal knowledge.
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CSPs on binary branching semilinear order

Partially-ordered time and branching time are well-studied models in
reasoning about temporal knowledge.

A complete complexity classfication for partially-ordered time model
has been obtained by Kompatscher and Pham (2016).

Some partial complexity results for branching time model were
obtained by Broxval, Jonsson, Coppersmith and Winograd.

We present here a complete complexity classification for branching
time model.
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BBS-SAT(Ψ) as a CSP

Proposition

There is a unique binary branching semilinear order (S2;≤) (up to
isomorphism) that satisfies the following conditions.

dense if for every x , y ∈ S2 such that x < y there is z ∈ S2 such that
x < z < y .

unbounded if for every x ∈ S2 there are y , z such that y < x < z .

without joins if for every x , y ≤ z and x , y incomparable, there is
u ∈ S2 such that x , y ≤ u and u < z .
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BBS-SAT(Ψ) as a CSP

Important properties of (S2;≤)

Every finite binary branching semilinear order is embedded into (S2;≤)

From formulas to relations

Let Ψ := {ψ1, ψ2, . . . , ψm} be a set of first-order formulas over language
{≤}. For each ψi let Rψi

:= {x ∈ Sk
2 : ψi (x) holds in (S2;≤)}, where k is

the arity of ψi . The structure (S2; Rψ1 , Rψ2 , . . . , Rψm) is called a reduct of
(S2;≤).

BBS-SATs as CSPs

The problem BBS-SAT(Ψ) can be reformulated as a CSP as follows.
Instance: A finite relational structure A over language
{Rψ1 , Rψ2 , . . . , Rψm}.
Question: Is there a homomorphism from A to (S2; Rψ1 , Rψ2 , . . . , Rψm)?
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Complexity classification Main result

Important relations

B := {(x , y , z) ∈ S3
2 : x < y < z ∨ z < y < x ∨ x < y ∧ y⊥z ∨ z <

y ∧ x⊥y}.

N := {(x , y , z) ∈ S3
2 : x |yz ∨ z |xy}, where

x |yz := ∃t.x⊥t ∧ t > y ∧ t > z .

T3 := {(x , y , z) ∈ S3
2 : x = y > z ∨ x = z > y}.

Lemma

CSP(B), CSP(N) and CSP(T3) are NP-complete.
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Complexity classification Main result

A Horn formula in (S2;≤) is a conjunction of the formulas of the form

x1 6= y1 ∨ x2 6= y2 ∨ ∙ ∙ ∙ ∨ xk 6= yk∨

∨ T (z1, z2, . . . , zm) ∨
∨

b∈B\{0,1}

{zi : bi = 0}|{zi : bi = 1},

of the form

x1 6= y1 ∨ x2 6= y2 ∨ xk 6= yk∨

T (z1, z2, . . . , zm) ∧ (z1 > zm ∨ z2 > zm ∨ ∙ ∙ ∙ ∨ zm−1 > zm)

∨
∨

b∈B\{0,1}

{zi : bi = 0}|{zi : bi = 1},

or of the form

x1 6= y1 ∨ x2 6= y2 ∨ xk 6= yk ∨ z1 = z2 = ∙ ∙ ∙ = zm

∨ T (z1, z2, . . . , zm) ∧ (z1 > zm ∨ z2 > zm ∨ ∙ ∙ ∙ ∨ zm−1 > zm)
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Complexity classification Main result

Theorem (M. Bodirsky and T. V. Pham, 2016)

Let Γ be a reduct of (S2;≤). Then one of the following applies.

End(Γ) contains a function whose range induces a chain in (S2;≤),
and CSP(Γ) is reduced to a CSP for a reduct of (Q;≤).
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Let Γ be a reduct of (S2;≤). Then one of the following applies.
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and CSP(Γ) is reduced to a CSP for a reduct of (Q;≤). Done!
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(S2;≤), and CSP(Γ) is a reduced to a CSP for a reduct of (L; C ).
Done!

End(Γ) = Aut(S2; B) and CSP(B) is reduced to CSP(Γ). Thus
CSP(Γ) is NP-complete.

End(Γ) = Aut(S2;≤), and CSP(N) or CSP(T3) is reduced to
CSP(Γ). Thus CSP(Γ) is NP-complete.

End(Γ) = Aut(S2;≤) and every relation in Γ can be defined by a
Horn formula, and CSP(Γ) can be solved in polynomial time.
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Complexity classification Algebraic tools

Tools for complexity clasification

The following tools are used to classify the complexity of BBS-SAT(Ψ):

Galois connection between Polymorphism clone and primitive positive
definability of an ω-categorical structure (Bodirsky and Nešeťril).

Leeb’s Ramsey theorem for rooted trees.

Canonicalization theorem invented by Bodirsky, Pinsker and Tsankov.
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Tools for complexity clasification

The following tools are used to classify the complexity of BBS-SAT(Ψ):

Galois connection between Polymorphism clone and primitive positive
definability of an ω-categorical structure (Bodirsky and Nešeťril).

Leeb’s Ramsey theorem for rooted trees.

Canonicalization theorem invented by Bodirsky, Pinsker and Tsankov.

Thank you for the attention!
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