On products of amalgams and amalgams of products

Maja Pech

Institute of Algebra TU Dresden Germany

Department of Mathematics and Informatics University of Novi Sad Serbia

29.05.2016

joint work with Christian Pech

On products of amalgams and amalgams of products

Maja Pech

3

(日) (周) (三) (三)

Canonical amalgams

Example: Sets

• Given B and C with $B \cap C = A$.

• For all D, and h_1, h_2 with $h_1 \upharpoonright_A = h_2 \upharpoonright_A$, there is a unique $h: B \cup C \to D$, such that $h \upharpoonright_B = h_1$ and $h \upharpoonright_C = h_2$:

$$h(x) = egin{cases} h_1(x), & x \in B, \ h_2(x), & x \in C. \end{cases}$$

Maja Pech

Categorification

Let $\ensuremath{\mathcal{C}}$ be a category. A commuting square

is called a **pushout square** if for all $\mathbf{E} \in C$ and all $h_1 : \mathbf{B} \to \mathbf{E}$, $h_2 : \mathbf{C} \to \mathbf{E}$ with $h_1 \circ f_1 = h_2 \circ f_2$ there is a unique $h : \mathbf{D} \to \mathbf{E}$ s.t. the following diagram commutes:

Maja Pech

Amalgamated free-sums

- $\bullet\,$ Given a class ${\cal K}$ of relational structures of the same type.
- \mathcal{K} together with homomorphisms can be considered as a category.

Given $A, B, C \in \mathcal{K}$ such that $A \leq B$, $A \leq C$. A structure $D \in \mathcal{K}$ is called **amalgamated free-sum** of B and C (w.r.t. to A) if $B, C \leq D$ and =

is a pushout square in \mathcal{K} . Notation: We denote **D** by **B** $\oplus_{\mathbf{\Delta}}$ **C**.

< 回 > < 三 > < 三 >

A class ${\cal K}$ of finite relational structures is called a strict amalgamation class if

- $\bullet\,$ it has (HP) and (JEP), and
- it is closed with respect to amalgamated free-sums.

Examples: finite simple graphs, finite posets.

Non-example: finite chains.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Amalgams of products and products of amalgams

There are two different ways to amalgamate the products:

How are they related?

э.

・ロト ・四ト ・ヨト ・

Connection between products and amalgamated free sums

What is *h*? Is it an embedding?

・ 同 ト ・ ヨ ト ・ ヨ ト

On products of amalgams and amalgams of products

Maja Pech

Example 1: Sets

amalgamated free-sum of sets = set union.

 $(B_1 \cup C_1) \times (B_2 \cup C_2) = (B_1 \times B_2) \cup (B_1 \times C_2) \cup (C_1 \times B_2) \cup (C_1 \times C_2)$ $\Rightarrow h \text{ is an embedding.}$

On products of amalgams and amalgams of products

イロト イポト イヨト イヨト

Non-example 1: Graphs

amalgamated free-sum on graphs = union of graphs.

Maja Pech

(人間) システン イラン

Non-example 1: Graphs (cont.)

Consider the following graphs:

- $\Gamma_1: a \circ b \qquad \Omega_1: c \circ b \qquad \Delta_1: b \circ$

Then

- $((a,b'),(b,c')) \in E((\Gamma_1 \cup \Omega_1) \times (\Gamma_2 \cup \Omega_2)),$
- $((a, b'), (b, c')) \notin E((\Gamma_1 \times \Gamma_2) \cup (\Omega_1 \times \Omega_2)).$

h is not an embedding.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Example 2: Posets

Amalgamated free-sum of posets

Given $\mathbf{B} = (B, \leq_{\mathbf{B}})$ and $\mathbf{C} = (C, \leq_{\mathbf{C}})$.

- $\mathbf{A} = (A, \leq_{\mathbf{A}})$, where $A = B \cap C$, $\leq_{\mathbf{A}} = \leq_{\mathbf{B}} \upharpoonright_{A} = \leq_{\mathbf{C}} \upharpoonright_{A}$.
- $\mathbf{B} \oplus_{\mathbf{A}} \mathbf{C} = (B \cup C, \leq_{\oplus})$, where $\leq \oplus$ is the transitive closure of $<_{\mathbf{B}} \cup <_{\mathbf{C}}$.

Non-example 2: Metric spaces with non-expansive maps

Amalgamated free-sum of metric spaces

Given non-empty finite metric spaces (B, d_B) , (C, d_C) and (A, d_A) , where $A = B \cap C$, $d_A = d_B \upharpoonright_A = d_C \upharpoonright_A$. $(B, d_B) \oplus_{(A, d_A)} (C, d_C) = (B \cup C, d_{\oplus})$, where

$$d_{\oplus}(x,y) = \begin{cases} d_B(x,y), & x,y \in B \\ d_C(x,y), & x,y \in C \\ \min_{z \in A}(d_B(x,z) + d_C(z,y)), & x \in B, y \in C \\ \min_{z \in A}(d_C(x,z) + d_B(z,y)), & x \in C, y \in B \end{cases}$$

Product of metrics

$$(B, d_B) \times (C, d_C) = (B \times C, d_{\times})$$
, where

$$d_{\times}((b_1, c_1), (b_2, c_2)) = \max\{d_B(b_1, b_2), d_C(c_1, c_2)\}.$$

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Non-example 2: Metric spaces with non-expansive maps (cont.)

Given

Consider

h is an injective contraction, not an embedding.

(日) (同) (三) (三) (三)

Maja Pech

Example 3: Ultrametric spaces with non-expansive maps

Amalgamated free-sum of ultrametric spaces

Given non-empty finite ultrametric spaces (B, d_B) , (C, d_C) and (A, d_A) , where $A = B \cap C$, $d_A = d_B \upharpoonright_A = d_C \upharpoonright_A$. $(B, d_B) \oplus_{(A, d_A)} (C, d_C) = (B \cup C, d_{\oplus})$, where

$$d_{\oplus}(x,y) = \begin{cases} d_B(x,y), & x,y \in B \\ d_C(x,y), & x,y \in C \\ \min_{z \in A} \max\{d_B(x,z), d_C(z,y)\}, & x \in B, y \in C \\ \min_{z \in A} \max\{d_C(x,z), d_B(z,y)\}, & x \in C, y \in B \end{cases}$$

Product of ultrametrics

$$(B, d_B) imes (C, d_C) = (B imes C, d_{ imes})$$
, where

$$d_{\times}((b_1, c_1), (b_2, c_2)) = \max\{d_B(b_1, b_2), d_C(c_1, c_2)\}.$$

h is always an embedding \sim

Non-example 3: "Almost" ultrametrics

Given binary relations ϱ_1 , ϱ_2 with

(1) ϱ_2 is reflexive, (2) ϱ_1 , ϱ_2 are symmetric (3) $\varrho_1(x,y) \land \varrho_2(y,z) \implies \varrho_2(x,z)$

Consider

- amalgamated free-sum = union closed w.r.t. (1) (3)
- $\mathbf{B}^2 \oplus_{\mathbf{A}^2} \mathbf{C}^2$: (u_1, u_2) and (v_1, v_2) are not related.
- $(\mathbf{B} \oplus_{\mathbf{A}} \mathbf{C})^2$: $\varrho_2((u_1, u_2), (v_1, v_2))$.

h is not an embedding.

イロト イポト イヨト イヨト

Homework

- Give a useful sufficient condition on strict amalgamation classes, so that the canonical homomorphisms from amalgams of products to products of amalgams are always embeddings.
- Extra credits are given for a useful necessary and sufficient condition.

Written solutions will be collected, corrected and evaluated at AAA93.

(4 間) トイヨト イヨト