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Canonical amalgams
Example: Sets

Given B and C with B ∩ C = A.

D

B B ∪ C

A C

=

=

=

=

h1

h2

h

For all D, and h1, h2 with h1↾A = h2↾A, there is a unique
h : B ∪ C → D, such that h↾B = h1 and h↾C = h2:

h(x) =

{

h1(x), x ∈ B ,

h2(x), x ∈ C .
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Categorification
Let C be a category. A commuting square

B D

A C

g1

f1

f2

g2

is called a pushout square if for all E ∈ C and all h1 : B → E, h2 : C → E

with h1 ◦ f1 = h2 ◦ f2 there is a unique h : D → E s.t. the following
diagram commutes:

E

B D

A C

f1

f2

g2

g1

h1

h2

h
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Amalgamated free-sums

Given a class K of relational structures of the same type.

K together with homomorphisms can be considered as a category.

Given A,B,C ∈ K such that A ≤ B, A ≤ C.
A structure D ∈ K is called amalgamated free-sum of B and C (w.r.t.
to A) if B,C ≤ D and

B D

A C

=

=

=

=

is a pushout square in K.
Notation: We denote D by B⊕A C.

On products of amalgams and amalgams of products Maja Pech



Strict amalgamation classes

A class K of finite relational structures is called a strict amalgamation

class if

it has (HP) and (JEP), and

it is closed with respect to amalgamated free-sums.

Examples: finite simple graphs, finite posets.

Non-example: finite chains.

On products of amalgams and amalgams of products Maja Pech



Amalgams of products and products of amalgams

Let K be a strict amalgamation class that is closed w.r.t. products.
Given

B1 B1 ⊕A1
C1

A1 C1

=

=

=

=

B2 B2 ⊕A2
C2

A2 C2

=

=

=

=

There are two different ways to amalgamate the products:

B1 × B2 (B1 × B2) ⊕A1×A2
(C1 × C2)

A1 × A2 C1 × C2

=

=

=

=

B1 × B2 (B1 ⊕A1
C1) × (B2 ⊕A2

C2)

A1 × A2 C1 × C2

=

=

=

=

How are they related?
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Connection between products and amalgamated free sums

(B1 ⊕A1
C1)× (B2 ⊕A2

C2)

B1 × B2 (B1 × B2)⊕A1×A2
(C1 × C2)

A1 × A2 C1 × C2

=

=

=

=

=

=

h

What is h? Is it an embedding?
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Example 1: Sets
amalgamated free-sum of sets = set union.

(B1 ∪ C1)× (B2 ∪ C2)

B1 × B2 (B1 × B2) ∪ (C1 × C2)

A1 × A2 C1 × C2

=

=

=

=

=

=

h

(B1 ∪ C1)× (B2 ∪ C2) = (B1 × B2) ∪ (B1 × C2) ∪ (C1 × B2) ∪ (C1 × C2)

⇒ h is an embedding.
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Non-example 1: Graphs

amalgamated free-sum on graphs = union of graphs.

(Γ1 ∪ Ω1)× (Γ2 ∪ Ω2)

Γ1 × Γ2 (Γ1 × Γ2) ∪ (Ω1 × Ω2)

∆1 ×∆2 Ω1 × Ω2

=

=

=

=

=

=

h
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Non-example 1: Graphs (cont.)

Consider the following graphs:

baΓ1 : bcΩ1 : b∆1 :

b′a′Γ2 : b′c ′Ω2 : b′∆2 :

Then

((a, b′), (b, c ′)) ∈ E ((Γ1 ∪Ω1)× (Γ2 ∪ Ω2)),

((a, b′), (b, c ′)) 6∈ E ((Γ1 × Γ2) ∪ (Ω1 × Ω2)).

h is not an embedding.
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Example 2: Posets

Amalgamated free-sum of posets

Given B = (B ,≤B) and C = (C ,≤C).

A = (A,≤A), where A = B ∩ C , ≤A=≤B↾A=≤C↾A.

B⊕A C = (B ∪ C ,≤⊕), where ≤ ⊕ is the transitive closure of
≤B ∪ ≤C.

(B1 ⊕A1
C1) × (B2 ⊕A2

C2)

B1 × B2 (B1 × B2) ⊕A1×A2
(C1 × C2)

A1 × A2 C1 × C2

=

=

=

=

=

=

h

h is always an embedding.
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Non-example 2: Metric spaces with non-expansive maps

Amalgamated free-sum of metric spaces

Given non-empty finite metric spaces (B , dB), (C , dC ) and (A, dA), where
A = B ∩ C , dA = dB↾A = dC ↾A.
(B , dB)⊕(A,dA) (C , dC ) = (B ∪ C , d⊕), where

d⊕(x , y) =























dB(x , y), x , y ∈ B

dC (x , y), x , y ∈ C

minz∈A(dB(x , z) + dC (z , y)), x ∈ B , y ∈ C

minz∈A(dC (x , z) + dB(z , y)), x ∈ C , y ∈ B .

Product of metrics

(B , dB)× (C , dC ) = (B × C , d×), where

d×((b1, c1), (b2, c2)) = max{dB(b1, b2), dC (c1, c2)}.
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Non-example 2: Metric spaces with non-expansive maps

(cont.)

Given

uaB :
1

vaC :
10

aA :

Consider

(v , a)

(a, a)

(a, u)

110

? ((B , dB)⊕(A,dA) (C , dC )
2)

(B , dB)
2 (B , dB)

2 ⊕(A,dA)2 (C , dC )
2

(A, dA)
2 (C , dC )

2

=

=

=

=

=

=

h

d⊕((a, u), (v , a)) = 11

d×((a, u), (v , a)) = 10

h is an injective contraction, not an embedding.

On products of amalgams and amalgams of products Maja Pech



Example 3: Ultrametric spaces with non-expansive maps

Amalgamated free-sum of ultrametric spaces

Given non-empty finite ultrametric spaces (B , dB), (C , dC ) and (A, dA),
where A = B ∩ C , dA = dB↾A = dC ↾A.
(B , dB)⊕(A,dA) (C , dC ) = (B ∪ C , d⊕), where

d⊕(x , y) =























dB(x , y), x , y ∈ B

dC (x , y), x , y ∈ C

minz∈Amax{dB(x , z), dC (z , y)}, x ∈ B , y ∈ C

minz∈Amax{dC (x , z), dB(z , y)}, x ∈ C , y ∈ B .

Product of ultrametrics

(B , dB)× (C , dC ) = (B × C , d×), where

d×((b1, c1), (b2, c2)) = max{dB(b1, b2), dC (c1, c2)}.

h is always an embedding.
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Non-example 3: ”Almost” ultrametrics
Given binary relations ̺1, ̺2 with

(1) ̺2 is reflexive,
(2) ̺1, ̺2 are symmetric
(3) ̺1(x , y) ∧ ̺2(y , z) =⇒ ̺2(x , z)

Consider

u2

a

u1

B :
̺2̺1, ̺2

̺2

̺2

̺2

̺2

v2

a

v1

C :
̺1, ̺2̺2

̺2

̺2

̺2

̺2

amalgamated free-sum = union closed w.r.t. (1) – (3)
B2 ⊕A2 C2: (u1, u2) and (v1, v2) are not related.
(B⊕A C)2: ̺2((u1, u2), (v1, v2)).

h is not an embedding.
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Homework

Give a useful sufficient condition on strict amalgamation classes, so
that the canonical homomorphisms from amalgams of products to
products of amalgams are always embeddings.

Extra credits are given for a useful necessary and sufficient condition.

Written solutions will be collected, corrected and evaluated at AAA93.
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