Taylor's modularity conjecture for idempotent varieties

Jakub Opršal

Jagiellonian University, Kraków Charles University in Prague

Praha, May 28, 2016

A variety is congruence modular if every algebra in it and every a triple of congruences α, β , and γ such that $\alpha \geq \gamma$ we have

$$
\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee \gamma.
$$

A variety is congruence modular if every algebra in it and every a triple of congruences α, β , and γ such that $\alpha > \gamma$ we have

$$
\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee \gamma.
$$

Theorem (A. Day, 1969)

A variety V is congruence modular if and only if there are terms d_0, \ldots, d_n such that

$$
d_0(x, y, z, w) \approx x, \quad d_n(x, y, z, w) \approx w,
$$

\n
$$
d_i(x, y, y, x) \approx x, \text{ for all } i,
$$

\n
$$
d_i(x, x, y, y) \approx d_{i+1}(x, x, y, y), \text{ for all even } i, \text{ and}
$$

\n
$$
d_i(x, y, y, z) \approx d_{i+1}(x, y, y, z), \text{ for all odd } i.
$$

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

O.C. Garcia and Walter Taylor, The lattice of interpretability types of varieties. Mem. Amer. Math. Soc., 50:v+125, 1984.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of $(*)$. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of $(*)$ either.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of $(*)$. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of $(*)$ either.

Theorem (Tschantz, 1996)

The above is true for $(*)$ = Mal'cev term.

 $q(x, x, y) \approx q(y, x, x) \approx y$

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of $(*)$. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of $(*)$ either.

Theorem (Tschantz, 1996)

The above is true for $(*)$ = Mal'cev term.

$$
q(x,x,y) \approx q(y,x,x) \approx y
$$

Example

The above is false for $(*)$ = Majority term.

$$
m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of $(*)$. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of $(*)$ either.

Theorem (Tschantz, 1996)

The above is true for $(*)$ = Mal'cev term.

$$
q(x,x,y) \approx q(y,x,x) \approx y
$$

Example

The above is false for $(*)$ = Majority term.

$$
m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x
$$

(For Σ_1 take Mal'cev term identities, and for Σ_2 Jónsson chain of length $> 2.$) **KORKAR KERKER E VOOR** An interpretation of a variety V in a variety W is a mapping I of basic operations of V to terms of W such that

$$
\mathcal{V}\models t\approx s\rightarrow\mathcal{W}\models I(t)\approx I(s).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Interpretability is a partial order of the class of all varieties,

An interpretation of a variety V in a variety W is a mapping I of basic operations of V to terms of W such that

$$
\mathcal{V}\models t\approx s\rightarrow\mathcal{W}\models I(t)\approx I(s).
$$

Interpretability is a partial order of the class of all varieties, and after factoring out the equi-interpretable varieties, we get a (class-size) latticed ordered poset.

An interpretability join of two varieties V and W is the variety whose signature is the disjoint union of signatures of V and W axiomatized by the union of Eq(V) and Eq(W).

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

An interpretability join of two varieties V and W is the variety whose signature is the disjoint union of signatures of V and W axiomatized by the union of Eq(V) and Eq(W).

Conjecture (Taylor)

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

KORKAR KERKER E VOOR

An interpretability join of two varieties V and W is the variety whose signature is the disjoint union of signatures of V and W axiomatized by the union of Eq(V) and Eq(W).

Conjecture (Taylor)

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

Conjecture (Alternative formulation)

For any two varieties V and W which are not congruence modular, their interpretability join is not congruence modular either.

KORKAR KERKER E VOOR

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices.

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices $=$ the variety generated by the idempotent reduct of Pol $({0, 1}, <)$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices $=$ the variety generated by the idempotent reduct of Pol({0, 1}, {(a, b, a \vee b) : a, b \in {0, 1}}).

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices $=$ the variety generated by the idempotent reduct of Pol $({0, 1}, <)$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Definition (Bova, Chen, and Valeriote, 2011)

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 9 Q Q ·

Definition (Bova, Chen, and Valeriote, 2011)

A pentagon is a structure $\mathbb P$ over the signature $\{\alpha, \beta, \gamma\}$, all binary relations which are equivalence relations on P that satisfy

KORKAR KERKER E VOOR

- $\triangleright \alpha \leq \beta$,
- \blacktriangleright $\beta \wedge \gamma = 0_P$.
- \triangleright $\beta \circ \gamma = 1_P$, and
- $\triangleright \alpha \vee \gamma = 1_P.$

Definition (Bova, Chen, and Valeriote, 2011)

A pentagon is a structure P over the signature $\{\alpha, \beta, \gamma\}$, all binary relations which are equivalence relations on P that satisfy

KORKAR KERKER DRA

- $\triangleright \alpha \leq \beta$,
- \blacktriangleright $\beta \wedge \gamma = 0_P$.
- \triangleright $\beta \circ \gamma = 1_P$, and
- $\triangleright \alpha \vee \gamma = 1_P$.

A pentagon is *interesting* if $\alpha < \beta$.

Definition (Bova, Chen, and Valeriote, 2011)

A pentagon is a structure $\mathbb P$ over the signature $\{\alpha,\beta,\gamma\}$, all binary relations which are equivalence relations on P that satisfy

- $\triangleright \alpha \leq \beta$.
- \blacktriangleright $\beta \wedge \gamma = 0_P$.
- \triangleright $\beta \circ \gamma = 1_P$, and
- $\triangleright \alpha \vee \gamma = 1_P$.
- A pentagon is *interesting* if $\alpha < \beta$.

Lemma (Bova, Chen, and Valeriote)

If a locally finite variety is not congruence modular, then there is a finite algebra **A** in the variety with three congruences α , β , and γ such that $(A, \alpha, \beta, \gamma)$ is a disjoint union of pentagons of which at least one is interesting.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Notation

.

For a congruence α of a product ${\sf A} \times {\sf B}$ and ${\sf a} \in \mathcal{A}$ let $\alpha^{\sf a}$ denotes the equivalence

$$
\{(b,b'):((a,b),(a,b'))\in\alpha\}
$$

Notation

.

For a congruence α of a product ${\sf A} \times {\sf B}$ and ${\sf a} \in \mathcal{A}$ let $\alpha^{\sf a}$ denotes the equivalence

$$
\{(b,b'):((a,b),(a,b'))\in \alpha\}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

If **A** is idempotent then α^a is always a congruence of **B**.

Notation

.

For a congruence α of a product ${\sf A} \times {\sf B}$ and ${\sf a} \in \mathcal{A}$ let $\alpha^{\sf a}$ denotes the equivalence

$$
\{(b,b'):((a,b),(a,b'))\in \alpha\}
$$

If **A** is idempotent then α^a is always a congruence of **B**.

Lemma (McGarry, 2009)

A locally finite idempotent variety is not congruence modular if and only if it contains algebras A and B with a congruence α < Ker π_A of $A \times B$ such that

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \blacktriangleright $\alpha^a = 1_B$ for some $a \in A$,
- If $\alpha^a \neq 1_B$ then $\alpha_a = \eta$ for some fixed $\eta < 1_B$.

We say that a congruence $\alpha \leq K$ er π_A of $A \times B$ is a modularity blocker if there exists $\eta \in \mathsf{Con}\,\mathbf{B}$ such that

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright $\alpha^a = 1_B$ for at least one $a \in A$, and

•
$$
\alpha^a = \eta
$$
 whenever $\alpha^a \neq 1_B$.

We say that a congruence $\alpha \leq K$ er $\pi_{\mathbf{A}}$ of $\mathbf{A} \times \mathbf{B}$ is a modularity blocker if there exists $\eta \in \mathsf{Con}\,\mathbf{B}$ such that

 \blacktriangleright $\alpha^a = 1_B$ for at least one $a \in A$, and

$$
\blacktriangleright \alpha^a = \eta \text{ whenever } \alpha^a \neq 1_B.
$$

Theorem (O, 2016)

An idempotent variety is not congruence modular if and only if $F(x, y) \times F(x, y)$ has a modularity blocker.

Definition

- A pentagon $(P, \alpha, \beta, \gamma)$ is special if
	- \blacktriangleright $P = A \times B$,
	- \blacktriangleright $\beta =$ Ker π_A , $\gamma =$ Ker π_B , and

Definition

- A pentagon $(P, \alpha, \beta, \gamma)$ is special if
	- \blacktriangleright $P = A \times B$,
	- \blacktriangleright $\beta =$ Ker π_A , $\gamma =$ Ker π_B , and

•
$$
\alpha^a \in \{0_B, 1_B\}
$$
 for every $a \in A$.

Definition

A pentagon $(P, \alpha, \beta, \gamma)$ is special if

 $P = A \times B$.

$$
\blacktriangleright \beta = \text{Ker}\,\pi_A, \, \gamma = \text{Ker}\,\pi_B, \text{ and}
$$

$$
\blacktriangleright \ \alpha^a \in \{0_B, 1_B\} \text{ for every } a \in A.
$$

Corollary

An idempotent variety that is not congruence modular is interpretable in the idempotent reduct of a special interesting pentagon.

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{\mathsf{a}} = 1_{\kappa}$ if $\mathsf{a} \in U_{\kappa}$, and $\alpha^{\mathsf{a}} = 0_{\kappa}$, otherwise.

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{\mathsf{a}} = 1_{\kappa}$ if $\mathsf{a} \in U_{\kappa}$, and $\alpha^{\mathsf{a}} = 0_{\kappa}$, otherwise.

Lemma

For every special interesting pentagon P there exists a clone homomorphism from its polymorphism clone to the polymorphism clone of \mathbb{P}_{κ} for all infinite cardinals $\kappa \geq |P|$.

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{\mathsf{a}} = 1_{\kappa}$ if $\mathsf{a} \in U_{\kappa}$, and $\alpha^{\mathsf{a}} = 0_{\kappa}$, otherwise.

Lemma

For every special interesting pentagon P there exists a clone homomorphism from its polymorphism clone to the polymorphism clone of \mathbb{P}_{κ} for all infinite cardinals $\kappa \geq |P|$.

Theorem (O., 2016)

Every idempotent variety that is not congruence modular is interpretable in the variety generated by $(P_{\kappa}, Pol\mathbb{P}_{\kappa})$ for all large enough κ .

KORKAR KERKER DRA

If V and W are two varieties that are not congruence modular then their join is not congruence modular either.

If V and W are two varieties that are not congruence modular then their join is not congruence modular either.

Theorem (O., 2016)

If V and W are two idempotent varieties that are not congruence modular then their join is not congruence modular either.

If V and W are two varieties that are not congruence modular then their join is not congruence modular either.

Theorem (O., 2016)

If V and W are two idempotent varieties that are not congruence modular then their join is not congruence modular either.

Thank you for your attention!

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Identities satisfied by Pol \mathbb{P}_{κ} but not by Pol \mathbb{P}_{λ} for $\lambda < \kappa$

Functions $f_i,~i\in\kappa$ are binary and $p_{i,j}$, and $q_{i,j},~r_{i,j},~i,j\in\kappa$ are ternary.

Functions $f_i,~i\in\kappa$ are binary and $p_{i,j}$, and $q_{i,j},~r_{i,j},~i,j\in\kappa$ are ternary.

$$
x \approx p_{i,j}(x, f_j(x, y), y),
$$

\n
$$
p_{i,j}(x, f_i(x, y), y) \approx q_{i,j}(x, f_j(x, y), y),
$$

\n
$$
q_{i,j}(x, f_i(x, y), y) \approx r_{i,j}(x, f_j(x, y), y),
$$

\n
$$
r_{i,j}(x, f_i(x, y), y) \approx y
$$

KORKA SERKER ORA

for all $i \neq j$, and $f_i(x, x) \approx x$ for all i.

Functions $f_i,~i\in\kappa$ are binary and $p_{i,j}$, and $q_{i,j},~r_{i,j},~i,j\in\kappa$ are ternary.

$$
x \approx p_{i,j}(x, f_j(x, y), y),
$$

\n
$$
p_{i,j}(x, f_i(x, y), y) \approx q_{i,j}(x, f_j(x, y), y),
$$

\n
$$
q_{i,j}(x, f_i(x, y), y) \approx r_{i,j}(x, f_j(x, y), y),
$$

\n
$$
r_{i,j}(x, f_i(x, y), y) \approx y
$$

for all $i \neq j$, and $f_i(x, x) \approx x$ for all i.

Corollary

The set of all interpretability classes of idempotent varieties that are not congruence modular does not have a largest element.