Taylor's modularity conjecture for idempotent varieties

Jakub Opršal

Jagiellonian University, Kraków Charles University in Prague

Praha, May 28, 2016

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

A variety is congruence modular if every algebra in it and every a triple of congruences α, β , and γ such that $\alpha \geq \gamma$ we have

$$\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee \gamma.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A variety is congruence modular if every algebra in it and every a triple of congruences α, β , and γ such that $\alpha \geq \gamma$ we have

$$\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee \gamma.$$

Theorem (A. Day, 1969)

A variety \mathcal{V} is congruence modular if and only if there are terms d_0, \ldots, d_n such that

$$d_0(x, y, z, w) \approx x, \quad d_n(x, y, z, w) \approx w,$$

 $d_i(x, y, y, x) \approx x, \text{ for all } i,$
 $d_i(x, x, y, y) \approx d_{i+1}(x, x, y, y), \text{ for all even } i, \text{ and}$
 $d_i(x, y, y, z) \approx d_{i+1}(x, y, y, z), \text{ for all odd } i.$

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

O.C. Garcia and Walter Taylor, *The lattice of interpretability types of varieties*. Mem. Amer. Math. Soc., 50:v+125, 1984.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of (*). Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of (*) either.

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of (*). Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of (*) either.

Theorem (Tschantz, 1996)

The above is true for (*) = Mal'cev term.

 $q(x,x,y) \approx q(y,x,x) \approx y$

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of (*). Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of (*) either.

Theorem (Tschantz, 1996)

The above is true for (*) = Mal'cev term.

$$q(x,x,y)\approx q(y,x,x)\approx y$$

Example

The above is false for (*) = Majority term.

$$m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$$

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of (*). Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of (*) either.

Theorem (Tschantz, 1996)

The above is true for (*) = Mal'cev term.

$$q(x,x,y)\approx q(y,x,x)\approx y$$

Example

The above is false for (*) = Majority term.

$$m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$$

(For Σ_1 take Mal'cev term identities, and for Σ_2 Jónsson chain of length ≥ 2 .)

An interpretation of a variety \mathcal{V} in a variety \mathcal{W} is a mapping I of basic operations of \mathcal{V} to terms of \mathcal{W} such that

$$\mathcal{V} \models t \approx s \rightarrow \mathcal{W} \models I(t) \approx I(s).$$

Interpretability is a partial order of the class of all varieties,

An interpretation of a variety \mathcal{V} in a variety \mathcal{W} is a mapping I of basic operations of \mathcal{V} to terms of \mathcal{W} such that

$$\mathcal{V} \models t \approx s \rightarrow \mathcal{W} \models I(t) \approx I(s).$$

Interpretability is a partial order of the class of all varieties, and after factoring out the equi-interpretable varieties, we get a (class-size) latticed ordered poset.

An interpretability join of two varieties \mathcal{V} and \mathcal{W} is the variety whose signature is the disjoint union of signatures of \mathcal{V} and \mathcal{W} axiomatized by the union of Eq(\mathcal{V}) and Eq(\mathcal{W}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An interpretability join of two varieties \mathcal{V} and \mathcal{W} is the variety whose signature is the disjoint union of signatures of \mathcal{V} and \mathcal{W} axiomatized by the union of Eq(\mathcal{V}) and Eq(\mathcal{W}).

Conjecture (Taylor)

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

An interpretability join of two varieties \mathcal{V} and \mathcal{W} is the variety whose signature is the disjoint union of signatures of \mathcal{V} and \mathcal{W} axiomatized by the union of Eq(\mathcal{V}) and Eq(\mathcal{W}).

Conjecture (Taylor)

Suppose that Σ_1 and Σ_2 are two sets of identities in disjoint languages such that neither of them implies existence of Day terms. Then $\Sigma_1 \cup \Sigma_2$ does not imply existence of Day terms either.

Conjecture (Alternative formulation)

For any two varieties ${\cal V}$ and ${\cal W}$ which are not congruence modular, their interpretability join is not congruence modular either.

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices.

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices.

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices = the variety generated by the idempotent reduct of $Pol(\{0,1\},\leq)$.

An idempotent variety satisfies a non-trivial congruence identity if and only if it is not interpretable in the variety of semilattices = the variety generated by the idempotent reduct of $Pol(\{0,1\},\{(a, b, a \lor b) : a, b \in \{0,1\}\}).$

Theorem (Valeriote, Willard, 2014)

An idempotent variety is n-permutable if and only if it is not interpretable in the variety of distributive lattices = the variety generated by the idempotent reduct of $Pol(\{0,1\},\leq)$.

Definition (Bova, Chen, and Valeriote, 2011)

・ロト・日本・モート モー うへぐ

Definition (Bova, Chen, and Valeriote, 2011)

A *pentagon* is a structure \mathbb{P} over the signature $\{\alpha, \beta, \gamma\}$, all binary relations which are equivalence relations on P that satisfy

- $\alpha \leq \beta$,
- $\beta \wedge \gamma = \mathbf{0}_P$,
- $\blacktriangleright \ \beta \circ \gamma = 1_{P}, \text{ and }$
- $\blacktriangleright \ \alpha \lor \gamma = \mathbf{1}_{P}.$

Definition (Bova, Chen, and Valeriote, 2011)

A *pentagon* is a structure \mathbb{P} over the signature $\{\alpha, \beta, \gamma\}$, all binary relations which are equivalence relations on P that satisfy

- $\alpha \leq \beta$,
- $\beta \wedge \gamma = \mathbf{0}_P$,
- $\beta \circ \gamma = 1_P$, and
- $\blacktriangleright \ \alpha \lor \gamma = \mathbf{1}_{P}.$

A pentagon is *interesting* if $\alpha < \beta$.

Definition (Bova, Chen, and Valeriote, 2011)

A *pentagon* is a structure \mathbb{P} over the signature $\{\alpha, \beta, \gamma\}$, all binary relations which are equivalence relations on P that satisfy

- $\alpha \leq \beta$,
- $\beta \wedge \gamma = \mathbf{0}_P$,
- ▶ $\beta \circ \gamma = 1_P$, and
- $\blacktriangleright \ \alpha \lor \gamma = \mathbf{1}_{P}.$

A pentagon is *interesting* if $\alpha < \beta$.

Lemma (Bova, Chen, and Valeriote)

If a locally finite variety is not congruence modular, then there is a finite algebra **A** in the variety with three congruences α , β , and γ such that $(A, \alpha, \beta, \gamma)$ is a disjoint union of pentagons of which at least one is interesting.

Notation

For a congruence α of a product $\mathbf{A} \times \mathbf{B}$ and $a \in A$ let α^a denotes the equivalence

$$\{(b,b'):((a,b),(a,b'))\in\alpha\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

.

For a congruence α of a product $\mathbf{A} \times \mathbf{B}$ and $a \in A$ let α^a denotes the equivalence

$$\{(b,b'):((a,b),(a,b'))\in\alpha\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If **A** is idempotent then α^a is always a congruence of **B**.

Notation

.

For a congruence α of a product $\mathbf{A} \times \mathbf{B}$ and $a \in A$ let α^a denotes the equivalence

$$\{(b,b'):((a,b),(a,b'))\in\alpha\}$$

If ${\bf A}$ is idempotent then α^{a} is always a congruence of ${\bf B}.$

Lemma (McGarry, 2009)

A locally finite idempotent variety is not congruence modular if and only if it contains algebras **A** and **B** with a congruence $\alpha \leq \text{Ker } \pi_{\mathbf{A}} \text{ of } \mathbf{A} \times \mathbf{B} \text{ such that}$

- $\alpha^{a} = 1_{B}$ for some $a \in A$,
- if $\alpha^a \neq 1_B$ then $\alpha_a = \eta$ for some fixed $\eta < 1_B$.

We say that a congruence $\alpha \leq \operatorname{Ker} \pi_{\mathbf{A}}$ of $\mathbf{A} \times \mathbf{B}$ is a modularity blocker if there exists $\eta \in \operatorname{Con} \mathbf{B}$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\alpha^a = 1_B$ for at least one $a \in A$, and

•
$$\alpha^a = \eta$$
 whenever $\alpha^a \neq 1_B$.

We say that a congruence $\alpha \leq \operatorname{Ker} \pi_{\mathbf{A}}$ of $\mathbf{A} \times \mathbf{B}$ is a modularity blocker if there exists $\eta \in \operatorname{Con} \mathbf{B}$ such that

• $\alpha^a = 1_B$ for at least one $a \in A$, and

•
$$\alpha^a = \eta$$
 whenever $\alpha^a \neq 1_B$.

Theorem (O, 2016)

An idempotent variety is not congruence modular if and only if $\mathbf{F}(x, y) \times \mathbf{F}(x, y)$ has a modularity blocker.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition

- A pentagon $(P, \alpha, \beta, \gamma)$ is special if
 - $P = A \times B$,
 - $\beta = \operatorname{Ker} \pi_A$, $\gamma = \operatorname{Ker} \pi_B$, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

- A pentagon $(P, \alpha, \beta, \gamma)$ is special if
 - $P = A \times B$,
 - $\beta = \operatorname{Ker} \pi_A$, $\gamma = \operatorname{Ker} \pi_B$, and

•
$$\alpha^a \in \{\mathbf{0}_B, \mathbf{1}_B\}$$
 for every $a \in A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A pentagon $(P, \alpha, \beta, \gamma)$ is *special* if

• $P = A \times B$,

•
$$\beta = \operatorname{Ker} \pi_A$$
, $\gamma = \operatorname{Ker} \pi_B$, and

•
$$\alpha^{a} \in \{0_{B}, 1_{B}\}$$
 for every $a \in A$.

Corollary

An idempotent variety that is not congruence modular is interpretable in the idempotent reduct of a special interesting pentagon.

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{a} = 1_{\kappa}$ if $a \in U_{\kappa}$, and $\alpha^{a} = 0_{\kappa}$, otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{a} = 1_{\kappa}$ if $a \in U_{\kappa}$, and $\alpha^{a} = 0_{\kappa}$, otherwise.

Lemma

For every special interesting pentagon P there exists a clone homomorphism from its polymorphism clone to the polymorphism clone of \mathbb{P}_{κ} for all infinite cardinals $\kappa \geq |P|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

For an infinite cardinal κ fix $U_{\kappa} \subseteq \kappa$ with $|U_{\kappa}| = |\kappa \setminus U_{\kappa}| = \kappa$, let \mathbb{P}_{κ} denotes a special pentagon $(P_{\kappa}, \alpha, \beta, \gamma)$ with $P_{\kappa} = \kappa \times \kappa$ and $\alpha^{a} = 1_{\kappa}$ if $a \in U_{\kappa}$, and $\alpha^{a} = 0_{\kappa}$, otherwise.

Lemma

For every special interesting pentagon P there exists a clone homomorphism from its polymorphism clone to the polymorphism clone of \mathbb{P}_{κ} for all infinite cardinals $\kappa \geq |P|$.

Theorem (O., 2016)

Every idempotent variety that is not congruence modular is interpretable in the variety generated by $(P_{\kappa}, \text{Pol }\mathbb{P}_{\kappa})$ for all large enough κ .

If ${\cal V}$ and ${\cal W}$ are two varieties that are not congruence modular then their join is not congruence modular either.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

If $\mathcal V$ and $\mathcal W$ are two varieties that are not congruence modular then their join is not congruence modular either.

Theorem (O., 2016)

If \mathcal{V} and \mathcal{W} are two idempotent varieties that are not congruence modular then their join is not congruence modular either.

If $\mathcal V$ and $\mathcal W$ are two varieties that are not congruence modular then their join is not congruence modular either.

Theorem (O., 2016)

If \mathcal{V} and \mathcal{W} are two idempotent varieties that are not congruence modular then their join is not congruence modular either.

Thank you for your attention!

Identities satisfied by $\operatorname{Pol} \mathbb{P}_{\kappa}$ but not by $\operatorname{Pol} \mathbb{P}_{\lambda}$ for $\lambda < \kappa$

Functions f_i , $i \in \kappa$ are binary and $p_{i,j}$, and $q_{i,j}$, $r_{i,j}$, $i, j \in \kappa$ are ternary.

Functions f_i , $i \in \kappa$ are binary and $p_{i,j}$, and $q_{i,j}$, $r_{i,j}$, $i, j \in \kappa$ are ternary.

$$\begin{aligned} x &\approx p_{i,j}(x, f_j(x, y), y), \\ p_{i,j}(x, f_i(x, y), y) &\approx q_{i,j}(x, f_j(x, y), y), \\ q_{i,j}(x, f_i(x, y), y) &\approx r_{i,j}(x, f_j(x, y), y), \\ r_{i,j}(x, f_i(x, y), y) &\approx y \end{aligned}$$

for all $i \neq j$, and $f_i(x, x) \approx x$ for all *i*.

Functions f_i , $i \in \kappa$ are binary and $p_{i,j}$, and $q_{i,j}$, $r_{i,j}$, $i, j \in \kappa$ are ternary.

$$\begin{aligned} x &\approx p_{i,j}(x, f_j(x, y), y), \\ p_{i,j}(x, f_i(x, y), y) &\approx q_{i,j}(x, f_j(x, y), y), \\ q_{i,j}(x, f_i(x, y), y) &\approx r_{i,j}(x, f_j(x, y), y), \\ r_{i,j}(x, f_i(x, y), y) &\approx y \end{aligned}$$

for all $i \neq j$, and $f_i(x, x) \approx x$ for all *i*.

Corollary

The set of all interpretability classes of idempotent varieties that are not congruence modular does not have a largest element.