Duality for dyadic intervals

Anna Mućka, Katarzyna Matczak and Anna Romanowska Warsaw University of Technology

AAA92, 2016

・ロット 御マ キョット キョン

æ

A. Mućka, K. Matczak, A. Romanowska Duality for dyadic intervals

Let \mathcal{A} and \mathcal{X} be categories. We say that there is a *dual* equivalence or simply *duality* between \mathcal{A} and \mathcal{X} if there are contravariant functors

 $D: \mathcal{A} \rightarrow \mathcal{X} \text{ and } E: \mathcal{X} \rightarrow \mathcal{A}$

such that both $DE = E \circ D$ and $ED = D \circ E$ are naturally isomorphic with the corresponding identity functors on A and X respectively.

In many cases the functors of the duality are represented by a *schizophrenic object*. The schizophrenic object *T* appears simultaneously as an object \underline{T} of \mathcal{A} and as an object \underline{T} in \mathcal{X} . The underlying sets of \underline{T} and \underline{T} coincide (with *T*).

Duality

The functors D and E are defined on objects and morphisms by

$$\begin{array}{cccc} A & & \mathcal{A}(A,\underline{\mathrm{T}}) & & fx:A \to B \to \underline{\mathrm{T}} \\ \downarrow f & \stackrel{D}{\mapsto} & \uparrow f^{D} & & \uparrow \\ B & & \mathcal{A}(B,\underline{\mathrm{T}}) & & x:B \to \underline{\mathrm{T}}. \end{array}$$
$$\begin{array}{cccc} X & & \mathcal{X}(X,\underline{\mathrm{T}}) & & \varphi\alpha:X \to Y \to \underline{\mathrm{T}} \\ \downarrow \varphi & \stackrel{E}{\mapsto} & \uparrow \varphi^{E} & & \uparrow \\ Y & & \mathcal{X}(Y,\underline{\mathrm{T}}) & & \alpha:Y \to \underline{\mathrm{T}} \end{array}$$

イロト 不同 トイヨト イヨト

э.

Theorem (J. D. H. Smith, A. Romanowska)

A τ -algebra A is entropic iff for each τ -algebra X, the morphism set $\underline{\tau}(X, A)$ is a subalgebra of the power τ -algebra A^X .

Corollary

If \mathcal{K} is a prevariety of entropic algebras, then for each pair A, B of \mathcal{K} -algebras, the morphism set $\mathcal{K}(B, A)$ is again a \mathcal{K} -algebra.

Romanowska, Ślusarski and Smith described a duality between the category of (real) polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. The duality is given by a schizophrenic object, the unit real interval I = [0, 1]. The duality for real intervals is trivial. All real intervals are isomorphic, and the dual of any interval is the square $I \times I$.

Convex sets

Let \mathbb{D} be the faithfull affine spaces over the principal ideal domain $\mathbb{D} = \mathbb{Z}[1/2] = \{m/2^n \mid m, n \in \mathbb{Z}\}$ of dyadic rational numbers.

Definition

Let *A* be a faithful affine \mathbb{D} -space. For $x, y \in A$, let $x \circ y = (x + y)/2 = xy1/2$ be the arithmetical mean of *x* and *y*. Then the subreduct (B, \circ) of the reduct (A, \circ) is called an *algebraic dyadic convex sets*.

Definition

A subset of \mathbb{D}^k , for k = 1, 2, ..., is called a *geometric dyadic convex set* or briefly just a *dyadic convex set*, if it is the intersection of a convex subset *C* of \mathbb{R}^k with its subspace \mathbb{D}^k .

イロト 不得 とくほ とくほう 二日

Definition

By an interval of \mathbb{D} we mean a subset $[a,b] := \{x \in \mathbb{D} \mid a \le x \le b\}$, for $a, b \in \mathbb{D}$. In particular, \mathbb{D}_1 denotes the dyadic unit interval, the intersection $I \cap \mathbb{D}$ of the unit real interval I = [0, 1] and the dyadic line \mathbb{D} .

Dyadic intervals are considered as commutative binary modes.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem [K. Matczak, A. Romanowska, J. D. H. Smith]

Each non-trivial interval of \mathbb{D} is isomorphic to some interval [0, k], where k is an odd positive integer. Two such intervals are isomorphic precisely when their right hand ends are equal.

If an interval of \mathbb{D} is isomorphic to some interval [0, k], where k is an odd positive integer, then we say that it is of *type* k and denote by \mathbb{D}_k .

Each dyadic interval of type k > 1 is 3-*generated*, that means it is minimally generated by three elements.

・ロット 御マ キョット キョン

Theorem

Each interval [0, k], where k is an odd positive integer is generated by any of the following sets: $\{0, 1, k\}, \{0, g, k\}, \{0, 2^n, k\}$ where gcd(g, k) = 1 and 2^n it the greatest power of two not greater than k.

For example:

$$<0,1,5>\cong<0,3,5>\cong<0,4,5>\cong<0,\frac{1}{2},5>\cong\mathbb{D}_{5},$$

and

$$<0,3>\cong<0,5>\cong<0,1>\cong\mathbb{D}_1.$$

Moreover

$$<$$
 0, 5 $> \leq \mathbb{D}_5$.

The category \mathcal{A} we are interested in will be the category \mathcal{DJ} of commutative binary modes isomorphic to dyadic intervals. This is a subcategory of the category $\mathcal{Q} = Q(\mathbb{D})$ of algebraic dyadic convex sets, which is a subquasivariety of the variety of commutative binary modes. Morphisms of the category \mathcal{DJ} are relative groupoid homomorphisms, that means homomorphisms from members of \mathcal{Q} into members of \mathcal{Q} . The unit interval \mathbb{D}_1 will play a role of a schizophrenic object. For an interval J in \mathcal{DJ} , the representation space X will be constructed on the set $\mathcal{Q}(J, \mathbb{D}_1)$ of homomorphisms from J to \mathbb{D}_1 .

Lemma

Let h be a homomorphism of a non-trivial dyadic interval J of type k into \mathbb{D}_1 . Then the homomorphic image h(J) is isomorphic to J, and hence it is also of type k, or else it is trivial.

Note as well that $h(\mathbb{D}_k)$ is not necessarily an interval (But it is always isomorphic with an interval.). However, it is always determined by the end points h(0) and h(k), and moreover $0 \le h(0), h(k) \le 1$. Consequently, we can identify the elements of $\mathcal{Q}(\mathbb{D}_k, \mathbb{D}_1)$ with the pairs (h(0), h(k)).

Proposition

The groupoid $\mathcal{Q}(\mathbb{D}_k, \mathbb{D}_1)$ is isomorphic to the subgroupoid H_k of the groupoid $\mathbb{D}_1 \times \mathbb{D}_1$ consisting of all points $(a, b) \in \mathbb{D}_1 \times \mathbb{D}_1$ such that k divides the difference b - a.

The first dual for the interval \mathbb{D}_k is the groupoid H_k .

・ロト ・ ア・ ・ ヨト

The groupoid H₃

A. Mućka, K. Matczak, A. Romanowska

Duality for dyadic intervals

The groupoid H'_3

The grouopid H_3 is isomorphic to the groupid H'_3 . The groupoid H'_3 has the important property. Every dyadic point of the real rhombus is an element of H'_3 .

The first dual $X_k := \mathbb{D}_k^D$ of \mathbb{D}_k will be the groupoid H'_k , equipped additionally with constants $\overline{0} = (0, 0)$ and $\overline{1} = (0, 1)$. Hence X_k is considered as the algebra $(H'_{k}, \circ, \overline{0}, \overline{1})$. Additionally, we define \mathbb{D}_0 to be a trivial interval, and X_0 to be \mathbb{D}_1 considered as the groupoid with constants 0 and 1. Note that, for odd k > 3the set H'_{k} is a (dyadic) closed rhombus but without two the two vertices (-1/(2k), 1/2) and (1/(2k), 1/2). The dual category \mathcal{X} is then described as the category $\widehat{\mathcal{D}}\widehat{\mathcal{J}}$ with the groupoids isomorphic to the groupoids X_k as objects, and with (relative) groupoid homomorphisms respecting the constants as morphisms.

To describe the second dual \mathbb{D}_k^{DE} of \mathbb{D}_k we will need a description of the non-trivial proper relative congruences of X_k .

Lemma

The kernel θ_h of a homomorphism $h: (X_k, \circ, \overline{0}, \overline{1}) \to (\mathbb{D}_1, \circ, \overline{0}, \overline{1})$, where $k \ge 1$, is determined by the slope α of a family of parallel lines given by $y = \alpha x + b$ crossing (but not containing) the diagonal $\delta = \{(0, d) \mid d \in \mathbb{D}_1\}$ of X_k . The blocks of θ_h are subgroupoids of H'_k , each consisting of the (dyadic) points of X_k belonging to one line of slope α .

ヘロン 不良 とくほう 不良 とう

Lemma

The set $\widehat{\mathcal{DJ}}(X_k, \mathbb{D}_1)$ of homomorphisms from X_k to \mathbb{D}_1 forms a commutative binary mode isomorphic to the interval \mathbb{D}_k .

Theorem

There is a duality between the categories \mathcal{DJ} and $\widehat{\mathcal{DJ}}$.

Thank You for your attention

Figure : Dual ladybirds

A. Mućka, K. Matczak, A. Romanowska

Duality for dyadic intervals