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Duality

Let A and X be categories. We say that there is a dual
equivalence or simply duality between A and X if there are
contravariant functors

D : A → X and E : X → A

such that both DE = E ◦ D and ED = D ◦ E are naturally
isomorphic with the corresponding identity functors on A and X
respectively.
In many cases the functors of the duality are represented by a
schizophrenic object. The schizophrenic object T appears
simultaneously as an object T of A and as an object T∼ in X .
The underlying sets of T and T∼ coincide (with T ).
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Duality

The functors D and E are defined on objects and morphisms by

A A(A,T) fx : A→ B → T

↓ f D7→ ↑ f D ↑
B A(B,T) x : B → T.

X X (X ,T∼) ϕα : X → Y → T∼
↓ ϕ E7→ ↑ ϕE ↑
Y X (Y ,T∼) α : Y → T∼
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Duality

Theorem (J. D. H. Smith, A. Romanowska)
A τ -algebra A is entropic iff for each τ -algebra X, the morphism
set τ(X ,A) is a subalgebra of the power τ -algebra AX .

Corollary

If K is a prevariety of entropic algebras, then for each pair A, B
of K-algebras, the morphism set K(B,A) is again a K-algebra.
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Duality

Romanowska, Ślusarski and Smith described a duality between
the category of (real) polytopes (finitely generated real convex
sets considered as barycentric algebras) and a certain category
of intersections of hypercubes, considered as barycentric
algebras with additional constant operations. The duality is
given by a schizophrenic object, the unit real interval I = [0,1].
The duality for real intervals is trivial. All real intervals are
isomorphic, and the dual of any interval is the square I × I.
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Convex sets

Let D be the faithfull affine spaces over the principal ideal
domain D = Z[1/2] = {m/2n | m,n ∈ Z} of dyadic rational
numbers.

Definition
Let A be a faithful affine D-space. For x , y ∈ A, let
x ◦ y = (x + y)/2 = xy1/2 be the arithmetical mean of x and y .
Then the subreduct (B, ◦) of the reduct (A, ◦) is called an
algebraic dyadic convex sets.

Definition

A subset of Dk , for k = 1,2, . . . , is called a geometric dyadic
convex set or briefly just a dyadic convex set, if it is the
intersection of a convex subset C of Rk with its subspace Dk .
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Dyadic intervals

Definition
By an interval of D we mean a subset
[a,b] := {x ∈ D | a ≤ x ≤ b}, for a,b ∈ D. In particular, D1
denotes the dyadic unit interval, the intersection I ∩D of the unit
real interval I = [0,1] and the dyadic line D.

Dyadic intervals are considered as commutative binary modes.
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Dyadic intervals

Theorem [K. Matczak, A. Romanowska, J. D. H. Smith]
Each non-trivial interval of D is isomorphic to some interval
[0, k ], where k is an odd positive integer. Two such intervals are
isomorphic precisely when their right hand ends are equal.

If an interval of D is isomorphic to some interval [0, k ], where k
is an odd positive integer, then we say that it is of type k and
denote by Dk .
Each dyadic interval of type k > 1 is 3-generated, that means it
is minimally generated by three elements.
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Dyadic intervals

Theorem
Each interval [0, k ], where k is an odd positive integer is
generated by any of the following sets:
{0,1, k}, {0,g, k}, {0,2n, k} where gcd(g, k) = 1 and 2n it the
greatest power of two not greater than k .

For example:

< 0,1,5 >∼=< 0,3,5 >∼=< 0,4,5 >∼=< 0,
1
2
,5 >∼= D5,

and
< 0,3 >∼=< 0,5 >∼=< 0,1 >∼= D1.

Moreover
< 0,5 >≤ D5.
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The category A

The category A we are interested in will be the category DJ of
commutative binary modes isomorphic to dyadic intervals. This
is a subcategory of the category Q = Q(D) of algebraic dyadic
convex sets, which is a subquasivariety of the variety of
commutative binary modes. Morphisms of the category DJ are
relative groupoid homomorphisms, that means
homomorphisms from members of Q into members of Q. The
unit interval D1 will play a role of a schizophrenic object. For an
interval J in DJ , the representation space X will be
constructed on the set Q(J,D1) of homomorhisms from J to D1.
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Homomorphic images of dyadic intervals

Lemma
Let h be a homomorphism of a non-trivial dyadic interval J of
type k into D1. Then the homomorphic image h(J) is
isomorphic to J, and hence it is also of type k, or else it is trivial.

Note as well that h(Dk ) is not necessarily an interval (But it is
always isomorphic with an interval.). However, it is always
determined by the end points h(0) and h(k), and moreover
0 ≤ h(0),h(k) ≤ 1. Consequently, we can identify the elements
of Q(Dk ,D1) with the pairs (h(0),h(k)).
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The first dual

Proposition

The groupoid Q(Dk ,D1) is isomorphic to the subgroupoid Hk of
the groupoid D1 × D1 consisting of all points (a,b) ∈ D1 × D1
such that k divides the difference b − a.

The first dual for the interval Dk is the groupoid Hk .
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The groupoid H3
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The groupoid H ′3
The grouopid H3 is isomorphic to the groupid H ′

3. The groupoid
H ′

3 has the important property. Every dyadic point of the real
rhombus is an element of H ′

3.
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The first dual

The first dual Xk := DD
k of Dk will be the groupoid H ′

k , equipped
additionally with constants 0̄ = (0,0) and 1̄ = (0,1). Hence Xk
is considered as the algebra (H ′

k , ◦, 0̄, 1̄). Additionally, we
define D0 to be a trivial interval, and X0 to be D1 considered as
the groupoid with constants 0 and 1. Note that, for odd k ≥ 3
the set H ′

k is a (dyadic) closed rhombus but without two the two
vertices (−1/(2k),1/2) and (1/(2k),1/2).
The dual category X is then described as the category D̂J with
the groupoids isomorphic to the groupoids Xk as objects, and
with (relative) groupoid homomorphisms respecting the
constants as morphisms.
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The second dual

To describe the second dual DDE
k of Dk we will need a

description of the non-trivial proper relative congruences of Xk .

Lemma
The kernel θh of a homomorphism
h : (Xk , ◦, 0̄, 1̄)→ (D1, ◦, 0̄, 1̄), where k ≥ 1, is determined by
the slope α of a family of parallel lines given by y = αx + b
crossing (but not containing) the diagonal δ = {(0,d) | d ∈ D1}
of Xk . The blocks of θh are subgroupoids of H ′

k , each consisting
of the (dyadic) points of Xk belonging to one line of slope α.
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The second dual

Lemma

The set D̂J (Xk ,D1) of homomorphisms from Xk to D1 forms a
commutative binary mode isomorphic to the interval Dk .

Theorem

There is a duality between the categories DJ and D̂J .
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Thank You for your attention

Figure : Dual ladybirds
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