Duality for dyadic intervals

Anna Mucka, Katarzyna Matczak and Anna Romanowska ´ Warsaw University of Technology

AAA92, 2016

(ロ) (伊) (ヨ) (ヨ)

G.

 $2Q$

A. Mućka, K. Matczak, A. Romanowska [Duality for dyadic intervals](#page-17-0)

Let A and X be categories. We say that there is a *dual equivalence* or simply *duality* between A and X if there are contravariant functors

 $D: A \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow A$

such that both $DE = E \circ D$ and $ED = D \circ E$ are naturally isomorphic with the corresponding identity functors on A and $\mathcal X$ respectively.

In many cases the functors of the duality are represented by a *schizophrenic object*. The schizophrenic object *T* appears simultaneously as an object \underline{T} of ${\mathcal{A}}$ and as an object \underline{T} in ${\mathcal{X}}$.
The conduction acts of \overline{T} and \overline{T} activide (with \overline{T}) The underlying sets of ^T and ^T[∼] coincide (with *T*).

Duality

The functors *D* and *E* are defined on objects and morphisms by

A	$\mathcal{A}(A, \underline{T})$	$fx : A \rightarrow B \rightarrow \underline{T}$	
$\downarrow f$	$\stackrel{D}{\mapsto}$	$\uparrow f^D$	\uparrow
B	$\mathcal{A}(B, \underline{T})$	$x : B \rightarrow \underline{T}$	
X	$\mathcal{X}(X, \underline{T})$	$\varphi \alpha : X \rightarrow Y \rightarrow \underline{T}$	
$\downarrow \varphi$	$\stackrel{E}{\mapsto}$	$\uparrow \varphi^E$	\uparrow
Y	$\mathcal{X}(Y, \underline{T})$	$\alpha : Y \rightarrow \underline{T}$	

 $(1 - 4)$ $(1 -$

the con-

Theorem (J. D. H. Smith, A. Romanowska)

A τ *-algebra A is entropic iff for each* τ *-algebra X, the morphism set* $\underline{\tau}(X, A)$ *is a subalgebra of the power* τ -algebra A^X *.*

Corollary

If K *is a prevariety of entropic algebras, then for each pair A, B of* K*-algebras, the morphism set* K(*B*, *A*) *is again a* K*-algebra.*

Romanowska, Slusarski and Smith described a duality between ´ the category of (real) polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. The duality is given by a schizophrenic object, the unit real interval $I = [0, 1]$. The duality for real intervals is trivial. All real intervals are isomorphic, and the dual of any interval is the square $I \times I$.

 $(1 + 4)$ and $(1 + 4)$ and $(1 + 4)$

Convex sets

Let $\mathbb D$ be the faithfull affine spaces over the principal ideal domain $\mathbb{D} = \mathbb{Z}[1/2] = \{m/2^n \mid m, n \in \mathbb{Z}\}$ of dyadic rational numbers.

Definition

Let *A* be a faithful affine \mathbb{D} -space. For $x, y \in A$, let $x \circ y = (x + y)/2 = xy/2$ be the arithmetical mean of *x* and *y*. Then the subreduct (B, \circ) of the reduct (A, \circ) is called an *algebraic dyadic convex sets*.

Definition

A subset of \mathbb{D}^k , for $k = 1, 2, \ldots$, is called a *geometric dyadic convex set* or briefly just a *dyadic convex set*, if it is the intersection of a convex subset C of \mathbb{R}^k with its subspace $\mathbb{D}^k.$

Definition

By an interval of D we mean a subset $[a, b] := \{x \in \mathbb{D} \mid a \le x \le b\}$, for $a, b \in \mathbb{D}$. In particular, \mathbb{D}_1 denotes the dyadic unit interval, the intersection $I \cap \mathbb{D}$ of the unit real interval $I = [0, 1]$ and the dyadic line D .

Dyadic intervals are considered as commutative binary modes.

(ロ) (伊) (ヨ) (ヨ)

Theorem [K. Matczak, A. Romanowska, J. D. H. Smith]

Each non-trivial interval of D is isomorphic to some interval [0, *k*], where *k* is an odd positive integer. Two such intervals are isomorphic precisely when their right hand ends are equal.

If an interval of D is isomorphic to some interval $[0, k]$, where k is an odd positive integer, then we say that it is of *type k* and denote by D*^k* .

Each dyadic interval of type *k* > 1 is 3*-generated*, that means it is minimally generated by three elements.

4 ロ) (何) (日) (日)

Theorem

Each interval [0, *k*], where *k* is an odd positive integer is generated by any of the following sets: $\{0, 1, k\}, \{0, g, k\}, \{0, 2^n, k\}$ where $gcd(g, k) = 1$ and 2^n it the greatest power of two not greater than *k*.

For example:

$$
<0,1,5> \cong <0,3,5> \cong <0,4,5> \cong <0,\frac{1}{2},5> \cong \mathbb{D}_5,
$$

and

$$
<0,3> \cong <0,5> \cong <0,1> \cong \mathbb{D}_1.
$$

Moreover

$$
<0,5>\leq \mathbb{D}_5.
$$

The category A we are interested in will be the category $\mathcal{D}\mathcal{J}$ of commutative binary modes isomorphic to dyadic intervals. This is a subcategory of the category $\mathcal{Q} = \mathsf{Q}(\mathbb{D})$ of algebraic dyadic convex sets, which is a subquasivariety of the variety of commutative binary modes. Morphisms of the category $D\mathcal{J}$ are relative groupoid homomorphisms, that means homomorphisms from members of \mathcal{Q} into members of \mathcal{Q} . The unit interval \mathbb{D}_1 will play a role of a schizophrenic object. For an interval *J* in $\mathcal{D}\mathcal{J}$, the representation space *X* will be constructed on the set $Q(J, \mathbb{D}_1)$ of homomorhisms from *J* to \mathbb{D}_1 .

Lemma

Let h be a homomorphism of a non-trivial dyadic interval J of type k into \mathbb{D}_1 . Then the homomorphic image h(J) is *isomorphic to J, and hence it is also of type k, or else it is trivial.*

Note as well that $h(\mathbb{D}_k)$ is not necessarily an interval (But it is always isomorphic with an interval.). However, it is always determined by the end points $h(0)$ and $h(k)$, and moreover $0 \leq h(0)$, $h(k) \leq 1$. Consequently, we can identify the elements of $\mathcal{Q}(\mathbb{D}_k, \mathbb{D}_1)$ with the pairs $(h(0), h(k))$.

 $(1 + 4)$ and $(1 + 4)$ and $(1 + 4)$

Proposition

The groupoid $\mathcal{Q}(\mathbb{D}_k,\mathbb{D}_1)$ is isomorphic to the subgroupoid H_k of the groupoid $\mathbb{D}_1 \times \mathbb{D}_1$ consisting of all points $(a, b) \in \mathbb{D}_1 \times \mathbb{D}_1$ such that *k* divides the difference $b - a$.

The first dual for the interval \mathbb{D}_k is the groupoid H_k .

(ロ) (個) (ミ) (ヨ)

The groupoid H_3

A. Mućka, K. Matczak, A. Romanowska [Duality for dyadic intervals](#page-0-0)

The groupoid *H* 0 <u>3</u>

The grouopid H_3 is isomorphic to the groupid H'_3 . The groupoid H_3' has the important property. Every dyadic point of the real rhombus is an element of H_3' .

The first dual $X_k := \mathbb{D}_{k}^D$ of \mathbb{D}_{k} will be the groupoid $H_k',$ equipped additionally with constants $\bar{0} = (0, 0)$ and $\bar{1} = (0, 1)$. Hence X_k is considered as the algebra $(H'_{k}, \circ, \bar{0}, \bar{1})$. Additionally, we define \mathbb{D}_0 to be a trivial interval, and X_0 to be \mathbb{D}_1 considered as the groupoid with constants 0 and 1. Note that, for odd $k > 3$ the set H'_{k} is a (dyadic) closed rhombus but without two the two vertices (−1/(2*k*), 1/2) and (1/(2*k*), 1/2). The dual category X is then described as the category $\bar{\mathcal{D}}\bar{\mathcal{J}}$ with the groupoids isomorphic to the groupoids *X^k* as objects, and with (relative) groupoid homomorphisms respecting the

constants as morphisms.

To describe the second dual \mathbb{D}_{k}^{DE} of \mathbb{D}_{k} we will need a description of the non-trivial proper relative congruences of *X^k* .

Lemma

The kernel θ*^h of a homomorphism* $h: (X_k,\circ, \bar 0, \bar 1) \to (\mathbb D_1, \circ, \bar 0, \bar 1)$, where $k \geq 1$, is determined by *the slope* α *of a family of parallel lines given by* $v = \alpha x + b$ *crossing (but not containing) the diagonal* $\delta = \{(0, d) | d \in \mathbb{D}_1\}$ *of X_k*. The blocks of θ_h are subgroupoids of H'_k , each consisting *of the (dyadic) points of X^k belonging to one line of slope* α*.*

 $(1 + 4)$ and $(1 + 4)$ and $(1 + 4)$

Lemma

The set $\widehat{DJ}(X_k, \mathbb{D}_1)$ *of homomorphisms from* X_k *to* \mathbb{D}_1 *forms a commutative binary mode isomorphic to the interval* \mathbb{D}_k .

Theorem

There is a duality between the categories DJ *and* DJ .

G.

Thank You for your attention

Figure : Dual ladybirds < 0 > < 0 > < 2 > < 2 > < 2

A. Mućka, K. Matczak, A. Romanowska [Duality for dyadic intervals](#page-0-0)

 2990