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QCSP definition

Definition

Let A be a finite relational structure. The decision problem QCSP(A) is:
INPUT: sentence ϕ = (Q1x1) . . . (Qnxn)(conjunction of atomic formulae).
Each Qi ∈ {∃, ∀}. Accept iff A |= ϕ.

Definition

The problem CSP(A) additionally stipulates that all Qi are ∃.

CSP(A) is at worst NP-complete, while QCSP(A) is at worst
Pspace-complete (for polynomial time many-one reductions).
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Connectedness

Theorem

If A is disconnected, then QCSP(A) reduces to CSP(Ac) (thus
QCSP(A) ∈ NP).

Theorem

QCSP(A) and QCSP(Ak) have the same complexity.

Theorem

Ak is connected for some k ≥ 2 iff A2 is connected.

3 cases: A disconnected; A connected, but A2 disconnected and A2

connected.
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Examples of CSP vs QCSP

A core and A2 disconnected ⇒ QCSP(A) reduces to CSP(A).

Example (Chen & Mayr; Božin - announced)

A such that CSP(A) ∈ P, but QCSP(A) is NP-complete.

Example (Božin - announced)

A such that CSP(A) ∈ P, but QCSP(A) is Pspace-complete.

Example (Easy)

A such that CSP(A) ∈ NP, but QCSP(A) is Pspace-complete.

Conjecture (The Greater Barny Conjecture)

If A is a smooth digraph with no loops but with algebraic length 1 (= with
A2 connected), then QCSP(A) is Pspace-complete.
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A Galois connection

Pol(A) = {All compatible operations of A} (polymorphisms). The set of
all surjective polymorphisms is denoted by s − Pol(A).

A relation compatible with all operations of A is an invariant relation
(subpower) of A. The relational clone of all subpowers of A is Inv(A).

Theorem (Jeavons, 1998)

If Pol(A; Γ1) ⊆ Pol(A; Γ2) and Γ2 is finite, then CSP(A; Γ2)
logspace-reduces to CSP(A; Γ1).

Theorem (BBCJK, 2009)

If s − Pol(A; Γ1) ⊆ s − Pol(A; Γ2) and Γ2 is finite, then QCSP(A; Γ2)
logspace-reduces to QCSP(A; Γ1)
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Basic Pspace-complete cases

Theorem (Shaeffer, 1978; Dalmau, 1997)

Q − NAE − SAT and Q − 1− in − 3− SAT are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

QCSP(ρNAE ) and QCSP(ρ1/3) are Pspace-complete.

Theorem (BBCJK, 2009)

For any n ≥ 3, QCSP(ρNAE ) reduces to QCSP(Kn), so QCSP(Kn) is
Pspace-complete.
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Some applications

Fact

All polymorphisms of Kn, n ≥ 3 are of the form f (x1, . . . , xk) = π(xi ),
where π ∈ Sym(n) and 1 ≤ i ≤ k are arbitrary.

Corollary

QCSP(A) is Pspace-complete when all f ∈ s − Pol(A) are essentially
unary (= A is idempotent-trivial when A is core).

Theorem (Larose, 2006)

Any tournament T with loops and all constants added is either idempotent
trivial or transitive. In the second case it easily follows that QCSP(T) ∈ P.

Theorem (-Dapić, - & Martin - see Petar’s talk)

All smooth semicomplete digraphs are idempotent-trivial, except K2 and
C3.
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Cycle with an extra edge

mm + 1

n
1

2

Figure : Cm,n

Example (Bašić, - & Martin)

Let Cm,n (1 < m < n) be the digraph drawn on the above picture.
If m|n then QCSP(Cm,n) ∈ P,
If (m, n) > 1 and m - n, then QCSP(Cm,n) is NP-complete,
If (m, n) = 1 then Cm,n is idempotent-trivial and so QCSP(Cm,n) is
Pspace-complete.
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Petar Marković (Novi Sad) QCSP via polymorphisms AAA92, Prague, May 2016 8 / 12



Cycle with an extra edge

mm + 1

n
1

2

Figure : Cm,n
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Chen’s collapsibility and switchability

The collapsibility given below is not the original definition, but an
equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra A is k-collapsible if for all n > k, An is generated by all
n-tuples in which there are at least n − k coordinates which are equal.

Definition (Switch)

A tuple (a1, . . . , an) ∈ An has a switch at i if ai−1 6= ai .

Definition (Switchability)

An algebra A is k-switchable if for all n > k, An is generated by all n-tuples
with at most k switches. A is switchable if it is k-switchable for some k.
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PGP and EGP

The central notions to Chen’s approach to QCSP are PGP and EGP.

Definition (PGP and EGP)

A finite algebra A has polynomially generated powers (PGP) if there exists
a polynomial p(x) such that for all n, An is generated by some set of
tuples with at most p(n) elements. A has exponentially generated powers
(EGP) if there exists a constant c > 0 such that for almost all n, any
generating set of An has more than 2cn elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

It is easy to show that collapsibility implies switchability, which implies
PGP. So the above theorem gives a dichotomy between PGP and EGP for
finite algebras.

Petar Marković (Novi Sad) QCSP via polymorphisms AAA92, Prague, May 2016 10 / 12



PGP and EGP

The central notions to Chen’s approach to QCSP are PGP and EGP.

Definition (PGP and EGP)

A finite algebra A has polynomially generated powers (PGP) if there exists
a polynomial p(x) such that for all n, An is generated by some set of
tuples with at most p(n) elements. A has exponentially generated powers
(EGP) if there exists a constant c > 0 such that for almost all n, any
generating set of An has more than 2cn elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

It is easy to show that collapsibility implies switchability, which implies
PGP. So the above theorem gives a dichotomy between PGP and EGP for
finite algebras.

Petar Marković (Novi Sad) QCSP via polymorphisms AAA92, Prague, May 2016 10 / 12



PGP and EGP

The central notions to Chen’s approach to QCSP are PGP and EGP.

Definition (PGP and EGP)

A finite algebra A has polynomially generated powers (PGP) if there exists
a polynomial p(x) such that for all n, An is generated by some set of
tuples with at most p(n) elements. A has exponentially generated powers
(EGP) if there exists a constant c > 0 such that for almost all n, any
generating set of An has more than 2cn elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

It is easy to show that collapsibility implies switchability, which implies
PGP. So the above theorem gives a dichotomy between PGP and EGP for
finite algebras.

Petar Marković (Novi Sad) QCSP via polymorphisms AAA92, Prague, May 2016 10 / 12



PGP and EGP

The central notions to Chen’s approach to QCSP are PGP and EGP.

Definition (PGP and EGP)

A finite algebra A has polynomially generated powers (PGP) if there exists
a polynomial p(x) such that for all n, An is generated by some set of
tuples with at most p(n) elements. A has exponentially generated powers
(EGP) if there exists a constant c > 0 such that for almost all n, any
generating set of An has more than 2cn elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

It is easy to show that collapsibility implies switchability, which implies
PGP. So the above theorem gives a dichotomy between PGP and EGP for
finite algebras.
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Applications to QCSP

Theorem (Chen)

Let A be a finite idempotent algebra. Switchability of A implies that
QCSP (A) reduces to CSP (A) for any relational structure A which
consists of relations in Inv(A).

HOWEVER:

Example [Zhuk]

There exists a finite relational structure A such that QCSP(A) is in P,
while the algebra Pol(A) has EGP.

Also, Martin and Zhuk (2015) proved that on three-element idempotent
algebras which have no type 1 covers, finite relatedness and switchability
imply collapsibility. They conjecture that the same holds for all idempotent
algebras which omit type 1.
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DĚKUJI ZA POZORNOST!
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