On the complexity of Quantified Constraint Satisfaction Problem via polymorphisms

Petar Marković

University of Novi Sad, Serbia

AAA92, Prague, May 2016

Definition

Let A be a finite relational structure. The decision problem $QCSP(A)$ is: INPUT: sentence $\varphi = (Q_1x_1)...(Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

Let $\mathbb A$ be a finite relational structure. The decision problem $QCSP(\mathbb A)$ is: INPUT: sentence $\varphi = (Q_1x_1)...(Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

The problem $CSP(A)$ additionally stipulates that all Q_i are \exists .

Definition

Let $\mathbb A$ be a finite relational structure. The decision problem $QCSP(\mathbb A)$ is: INPUT: sentence $\varphi = (Q_1x_1)...(Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

The problem $CSP(A)$ additionally stipulates that all Q_i are \exists .

 $CSP(A)$ is at worst NP-complete, while $QCSP(A)$ is at worst Pspace-complete (for polynomial time many-one reductions).

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

4 0 3 4

造

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(A)$ and $QCSP(A^k)$ have the same complexity.

K 로 H K 로

4 0 F

E

 QQ

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(A)$ and $QCSP(A^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k\geq 2$ iff \mathbb{A}^2 is connected.

 QQQ

不重 网络重

4 0 F

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(A)$ and $QCSP(A^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k\geq 2$ iff \mathbb{A}^2 is connected.

3 cases: A disconnected;

 QQQ

化重 网络重

4 D.K.

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(A)$ and $QCSP(A^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k\geq 2$ iff \mathbb{A}^2 is connected.

3 cases: $\mathbb A$ disconnected; $\mathbb A$ connected, but $\mathbb A^2$ disconnected

◂**◻▸ ◂⁄** ▸

 QQQ

If $\mathbb A$ is disconnected, then QCSP($\mathbb A$) reduces to CSP($\mathbb A^c$) (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(A)$ and $QCSP(A^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k\geq 2$ iff \mathbb{A}^2 is connected.

3 cases: A disconnected; A connected, but \mathbb{A}^2 disconnected and \mathbb{A}^2 connected.

 QQQ

${\mathbb A}$ core and ${\mathbb A}^2$ disconnected $\Rightarrow QCSP({\mathbb A})$ reduces to $CSP({\mathbb A})$.

4 0 3 4

 299

э

${\mathbb A}$ core and ${\mathbb A}^2$ disconnected $\Rightarrow QCSP({\mathbb A})$ reduces to $CSP({\mathbb A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is NP-complete.

${\mathbb A}$ core and ${\mathbb A}^2$ disconnected $\Rightarrow QCSP({\mathbb A})$ reduces to $CSP({\mathbb A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is NP-complete.

Example (Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is *Pspace*-complete.

 Ω

 ${\mathbb A}$ core and ${\mathbb A}^2$ disconnected $\Rightarrow QCSP({\mathbb A})$ reduces to $CSP({\mathbb A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is NP-complete.

Example (Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is *Pspace*-complete.

Example (Easy)

A such that $CSP(A) \in NP$, but $QCSP(A)$ is Pspace-complete.

 ${\mathbb A}$ core and ${\mathbb A}^2$ disconnected $\Rightarrow QCSP({\mathbb A})$ reduces to $CSP({\mathbb A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is NP-complete.

Example (Božin - announced)

A such that $CSP(A) \in P$, but $QCSP(A)$ is *Pspace*-complete.

Example (Easy)

A such that $CSP(A) \in NP$, but $QCSP(A)$ is Pspace-complete.

Conjecture (The Greater Barny Conjecture)

If $\mathbb A$ is a smooth digraph with no loops but with algebraic length $1 (=$ with \mathbb{A}^2 connected), then $QCSP(\mathbb{A})$ is $Pspace$ -complete.

(□) (包)

 QQ

 $Pol(A) = \{ All compatible operations of A \}$ (polymorphisms). The set of all surjective polymorphisms is denoted by $s - Pol(A)$.

イロトイド

 QQ

э

 $Pol(A) = \{ All compatible operations of A\}$ (polymorphisms). The set of all surjective polymorphisms is denoted by $s - Pol(A)$.

A relation compatible with all operations of A is an invariant relation (subpower) of **A**. The relational clone of all subpowers of **A** is $Inv(A)$.

 Ω

 $Pol(A) = \{ All compatible operations of A \}$ (polymorphisms). The set of all surjective polymorphisms is denoted by $s - Pol(A)$.

A relation compatible with all operations of A is an invariant relation (subpower) of **A**. The relational clone of all subpowers of **A** is $Inv(A)$.

Theorem (Jeavons, 1998)

If Pol(A; Γ_1) \subseteq Pol(A; Γ_2) and Γ_2 is finite, then CSP(A; Γ_2) logspace-reduces to $CSP(A; \Gamma_1)$.

 Ω

 $Pol(A) = \{ All compatible operations of A\}$ (polymorphisms). The set of all surjective polymorphisms is denoted by $s - Pol(A)$.

A relation compatible with all operations of A is an invariant relation (subpower) of **A**. The relational clone of all subpowers of **A** is $Inv(A)$.

Theorem (Jeavons, 1998)

If Pol(A; Γ_1) \subseteq Pol(A; Γ_2) and Γ_2 is finite, then CSP(A; Γ_2) logspace-reduces to $CSP(A; \Gamma_1)$.

Theorem (BBCJK, 2009)

If $s - Pol(A; \Gamma_1) \subseteq s - Pol(A; \Gamma_2)$ and Γ_2 is finite, then $QCSP(A; \Gamma_2)$ logspace-reduces to $QCSP(A; \Gamma_1)$

イロト イ押 トイヨ トイヨ トー

$Q - NAE - SAT$ and $Q - 1 - in - 3 - SAT$ are Pspace-complete.

4 0 3 4

 QQ

 $Q - NAE - SAT$ and $Q - 1 - in - 3 - SAT$ are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $\mathsf{QCSP}(\rho_\mathsf{NAE})$ and $\mathsf{QCSP}(\rho_{1/3})$ are Pspace-complete.

医单位 医单位 Petar Marković (Novi Sad) **QCSP** via polymorphisms AAA92, Prague, May 2016 6 / 12

 $Q - NAE - SAT$ and $Q - 1 - in - 3 - SAT$ are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $\mathsf{QCSP}(\rho_\mathsf{NAE})$ and $\mathsf{QCSP}(\rho_{1/3})$ are Pspace-complete.

Theorem (BBCJK, 2009)

For any $n > 3$, QCSP(ρ_{NAF}) reduces to QCSP(\mathbb{K}_n), so QCSP(\mathbb{K}_n) is Pspace-complete.

 QQ

イロト イ母ト イヨト イヨト

 $Q - NAE - SAT$ and $Q - 1 - in - 3 - SAT$ are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $\mathsf{QCSP}(\rho_\mathsf{NAE})$ and $\mathsf{QCSP}(\rho_{1/3})$ are Pspace-complete.

Theorem (BBCJK, 2009)

For any $n > 3$, QCSP(ρ_{NAF}) reduces to QCSP(\mathbb{K}_n), so QCSP(\mathbb{K}_n) is Pspace-complete.

 QQ

イロト イ母ト イヨト イヨト

Fact

All polymorphisms of \mathbb{K}_n , $n \geq 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \leq i \leq k$ are arbitrary.

4 0 3 4

 QQ

э

Fact

All polymorphisms of \mathbb{K}_n , $n \geq 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \leq i \leq k$ are arbitrary.

Corollary

 $QCSP(A)$ is Pspace-complete when all $f \in s - Pol(A)$ are essentially unary (= $\mathbb A$ is idempotent-trivial when $\mathbb A$ is core).

4 0 3 4

Fact

All polymorphisms of \mathbb{K}_n , $n \geq 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \leq i \leq k$ are arbitrary.

Corollary

 $QCSP(A)$ is Pspace-complete when all $f \in s - Pol(A)$ are essentially unary (= $\mathbb A$ is idempotent-trivial when $\mathbb A$ is core).

Theorem (Larose, 2006)

Any tournament $\mathbb T$ with loops and all constants added is either idempotent trivial or transitive. In the second case it easily follows that $QCSP(T) \in P$.

◂**◻▸ ◂⁄** ▸

Fact

All polymorphisms of \mathbb{K}_n , $n \geq 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \leq i \leq k$ are arbitrary.

Corollary

 $QCSP(A)$ is Pspace-complete when all $f \in s - Pol(A)$ are essentially unary ($= A$ is idempotent-trivial when A is core).

Theorem (Larose, 2006)

Any tournament $\mathbb T$ with loops and all constants added is either idempotent trivial or transitive. In the second case it easily follows that $QCSP(\mathbb{T}) \in P$.

Theorem (Đapić, - & Martin - see Petar's talk)

All smooth semicomplete digraphs are idempotent-trivial, except \mathbb{K}_2 and \mathbb{C}_3 .

Figure : $\mathbb{C}_{m,n}$

в Petar Marković (Novi Sad) [QCSP via polymorphisms](#page-0-0) AAA92, Prague, May 2016 8 / 12

4 0 8

 299

э

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ $(1 < m < n)$ be the digraph drawn on the above picture.

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ $(1 < m < n)$ be the digraph drawn on the above picture. If $m|n$ then $QCSP(\mathbb{C}_{m,n}) \in P$,

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ $(1 \lt m \lt n)$ be the digraph drawn on the above picture. If $m|n$ then $QCSP(\mathbb{C}_{m,n}) \in P$, If $(m, n) > 1$ and $m \nmid n$, then $QCSP(\mathbb{C}_{m,n})$ is NP-complete,

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ $(1 \lt m \lt n)$ be the digraph drawn on the above picture. If $m|n$ then $QCSP(\mathbb{C}_{m,n}) \in P$, If $(m, n) > 1$ and $m \nmid n$, then $QCSP(\mathbb{C}_{m,n})$ is NP-complete, If $(m, n) = 1$ then $\mathbb{C}_{m,n}$ is idempotent-trivial and so $QCSP(\mathbb{C}_{m,n})$ is Pspace-complete.

Chen's collapsibility and switchability

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

4 0 F

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is *k*-collapsible if for all $n > k$, \mathbf{A}^n is generated by all n-tuples in which there are at least $n - k$ coordinates which are equal.

 Ω

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is *k*-collapsible if for all $n > k$, \mathbf{A}^n is generated by all n-tuples in which there are at least $n - k$ coordinates which are equal.

Definition (Switch)

A tuple $(a_1, \ldots, a_n) \in A^n$ has a *switch* at *i* if $a_{i-1} \neq a_i$.

 Ω

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is *k*-collapsible if for all $n > k$, \mathbf{A}^n is generated by all n-tuples in which there are at least $n - k$ coordinates which are equal.

Definition (Switch)

A tuple $(a_1, \ldots, a_n) \in A^n$ has a *switch* at *i* if $a_{i-1} \neq a_i$.

Definition (Switchability)

An algebra **A** is k-switchable if for all $n > k$, \mathbf{A}^n is generated by all *n*-tuples with at most k switches. A is switchable if it is k-switchable for some k.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

D

4 ロ ▶ 4 冊

 2990

造

Definition (PGP and EGP)

A finite algebra **A** has *polynomially generated powers* (PGP) if there exists a polynomial $p(x)$ such that for all n, \mathbf{A}^n is generated by some set of tuples with at most $p(n)$ elements. A has exponentially generated powers (EGP) if there exists a constant $c > 0$ such that for almost all n, any generating set of $Aⁿ$ has more than 2^{cn} elements.

 Ω

Definition (PGP and EGP)

A finite algebra **A** has *polynomially generated powers* (PGP) if there exists a polynomial $p(x)$ such that for all n, \mathbf{A}^n is generated by some set of tuples with at most $p(n)$ elements. A has exponentially generated powers (EGP) if there exists a constant $c > 0$ such that for almost all n, any generating set of $Aⁿ$ has more than 2^{cn} elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

 Ω

Definition (PGP and EGP)

A finite algebra **A** has *polynomially generated powers* (PGP) if there exists a polynomial $p(x)$ such that for all n, \mathbf{A}^n is generated by some set of tuples with at most $p(n)$ elements. A has exponentially generated powers (EGP) if there exists a constant $c > 0$ such that for almost all n, any generating set of $Aⁿ$ has more than 2^{cn} elements.

Theorem (Zhuk 2015)

Let A be a finite algebra. Then either A is switchable, or A has EGP.

It is easy to show that collapsibility implies switchability, which implies PGP. So the above theorem gives a dichotomy between PGP and EGP for finite algebras.

 Ω

イロト イ押ト イヨト イヨト

Applications to QCSP

Theorem (Chen)

Let \bf{A} be a finite idempotent algebra. Switchability of \bf{A} implies that $QCSP(A)$ reduces to $CSP(A)$ for any relational structure A which consists of relations in $Inv(A)$.

4 D.K.

 QQ

Applications to QCSP

Theorem (Chen)

Let \bf{A} be a finite idempotent algebra. Switchability of \bf{A} implies that $QCSP(A)$ reduces to $CSP(A)$ for any relational structure A which consists of relations in $Inv(A)$.

HOWEVER:

4 D F

 299

E

Theorem (Chen)

Let \bf{A} be a finite idempotent algebra. Switchability of \bf{A} implies that $QCSP(A)$ reduces to $CSP(A)$ for any relational structure A which consists of relations in $Inv(A)$.

HOWEVER:

Example [Zhuk]

There exists a finite relational structure $\mathbb A$ such that $QCSP(\mathbb A)$ is in P, while the algebra $Pol(A)$ has EGP.

 Ω

Theorem (Chen)

Let \bf{A} be a finite idempotent algebra. Switchability of \bf{A} implies that $QCSP(A)$ reduces to $CSP(A)$ for any relational structure A which consists of relations in $Inv(A)$.

HOWEVER:

Example [Zhuk]

There exists a finite relational structure A such that $QCSP(A)$ is in P, while the algebra $Pol(A)$ has EGP.

Also, Martin and Zhuk (2015) proved that on three-element idempotent algebras which have no type 1 covers, finite relatedness and switchability imply collapsibility. They conjecture that the same holds for all idempotent algebras which omit type 1. ◂**◻▸ ◂⁄** ▸ - 4 国家 4 国家 QQ

DĚKUJI ZA POZORNOST!

D

Þ \mathbf{p}

4 D F

 299

造