On the complexity of Quantified Constraint Satisfaction Problem via polymorphisms

Petar Marković

University of Novi Sad, Serbia

AAA92, Prague, May 2016

Definition

Let \mathbb{A} be a finite relational structure. The decision problem $QCSP(\mathbb{A})$ is: INPUT: sentence $\varphi = (Q_1x_1) \dots (Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

Let \mathbb{A} be a finite relational structure. The decision problem $QCSP(\mathbb{A})$ is: INPUT: sentence $\varphi = (Q_1x_1) \dots (Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

The problem $CSP(\mathbb{A})$ additionally stipulates that all Q_i are \exists .

Definition

Let \mathbb{A} be a finite relational structure. The decision problem $QCSP(\mathbb{A})$ is: INPUT: sentence $\varphi = (Q_1x_1) \dots (Q_nx_n)$ (conjunction of atomic formulae). Each $Q_i \in \{\exists, \forall\}$. Accept iff $\mathbb{A} \models \varphi$.

Definition

The problem $CSP(\mathbb{A})$ additionally stipulates that all Q_i are \exists .

 $CSP(\mathbb{A})$ is at worst NP-complete, while $QCSP(\mathbb{A})$ is at worst Pspace-complete (for polynomial time many-one reductions).

< □ > < □ > < □ > < □ > < □ > < □ >

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

4 3 4 3 4 3 4

э

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(\mathbb{A})$ and $QCSP(\mathbb{A}^k)$ have the same complexity.

э

(B)

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(\mathbb{A})$ and $QCSP(\mathbb{A}^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k \ge 2$ iff \mathbb{A}^2 is connected.

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(\mathbb{A})$ and $QCSP(\mathbb{A}^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k \ge 2$ iff \mathbb{A}^2 is connected.

3 cases: \mathbb{A} disconnected;

A B A A B A

< □ > < 凸

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(\mathbb{A})$ and $QCSP(\mathbb{A}^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k \ge 2$ iff \mathbb{A}^2 is connected.

3 cases: $\mathbb A$ disconnected; $\mathbb A$ connected, but $\mathbb A^2$ disconnected

(I) < (II) < (II) < (II) < (II) < (II) < (III) </p>

If A is disconnected, then QCSP(A) reduces to $CSP(A^c)$ (thus $QCSP(A) \in NP$).

Theorem

 $QCSP(\mathbb{A})$ and $QCSP(\mathbb{A}^k)$ have the same complexity.

Theorem

 \mathbb{A}^k is connected for some $k \ge 2$ iff \mathbb{A}^2 is connected.

3 cases: A disconnected; A connected, but \mathbb{A}^2 disconnected and \mathbb{A}^2 connected.

(日)

A core and \mathbb{A}^2 disconnected $\Rightarrow QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$.

э

\mathbb{A} core and \mathbb{A}^2 disconnected $\Rightarrow QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *NP*-complete.

\mathbb{A} core and \mathbb{A}^2 disconnected $\Rightarrow QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *NP*-complete.

Example (Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *Pspace*-complete.

 \mathbb{A} core and \mathbb{A}^2 disconnected $\Rightarrow QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *NP*-complete.

Example (Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *Pspace*-complete.

Example (Easy)

A such that $CSP(\mathbb{A}) \in NP$, but $QCSP(\mathbb{A})$ is *Pspace*-complete.

< □ > < □ > < □ > < □ > < □ > < □ >

\mathbb{A} core and \mathbb{A}^2 disconnected $\Rightarrow QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$.

Example (Chen & Mayr; Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *NP*-complete.

Example (Božin - announced)

A such that $CSP(\mathbb{A}) \in P$, but $QCSP(\mathbb{A})$ is *Pspace*-complete.

Example (Easy)

A such that $CSP(\mathbb{A}) \in NP$, but $QCSP(\mathbb{A})$ is *Pspace*-complete.

Conjecture (The Greater Barny Conjecture)

If A is a smooth digraph with no loops but with algebraic length 1 (= with \mathbb{A}^2 connected), then $QCSP(\mathbb{A})$ is *Pspace*-complete.

Petar Marković (Novi Sad)

A D F A B F A B F A B

4 3 4 3 4 3 4

A relation compatible with all operations of **A** is an invariant relation (subpower) of **A**. The relational clone of all subpowers of **A** is Inv(A).

A relation compatible with all operations of A is an invariant relation (subpower) of A. The relational clone of all subpowers of A is Inv(A).

Theorem (Jeavons, 1998)

If $Pol(A; \Gamma_1) \subseteq Pol(A; \Gamma_2)$ and Γ_2 is finite, then $CSP(A; \Gamma_2)$ logspace-reduces to $CSP(A; \Gamma_1)$.

A relation compatible with all operations of A is an invariant relation (subpower) of A. The relational clone of all subpowers of A is Inv(A).

Theorem (Jeavons, 1998)

If $Pol(A; \Gamma_1) \subseteq Pol(A; \Gamma_2)$ and Γ_2 is finite, then $CSP(A; \Gamma_2)$ logspace-reduces to $CSP(A; \Gamma_1)$.

Theorem (BBCJK, 2009)

If $s - Pol(A; \Gamma_1) \subseteq s - Pol(A; \Gamma_2)$ and Γ_2 is finite, then $QCSP(A; \Gamma_2)$ logspace-reduces to $QCSP(A; \Gamma_1)$

イロト イヨト イヨト ・

Q - NAE - SAT and Q - 1 - in - 3 - SAT are Pspace-complete.

Petar Marković (Novi Sad)

A B M A B M

Q - NAE - SAT and Q - 1 - in - 3 - SAT are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $QCSP(\rho_{NAE})$ and $QCSP(\rho_{1/3})$ are Pspace-complete.

Q - NAE - SAT and Q - 1 - in - 3 - SAT are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $QCSP(\rho_{NAE})$ and $QCSP(\rho_{1/3})$ are Pspace-complete.

Theorem (BBCJK, 2009)

For any $n \ge 3$, $QCSP(\rho_{NAE})$ reduces to $QCSP(\mathbb{K}_n)$, so $QCSP(\mathbb{K}_n)$ is Pspace-complete.

Q - NAE - SAT and Q - 1 - in - 3 - SAT are Pspace-complete.

Theorem (Creignou, Khanna & Sudan, 2001)

 $QCSP(\rho_{NAE})$ and $QCSP(\rho_{1/3})$ are Pspace-complete.

Theorem (BBCJK, 2009)

For any $n \ge 3$, $QCSP(\rho_{NAE})$ reduces to $QCSP(\mathbb{K}_n)$, so $QCSP(\mathbb{K}_n)$ is Pspace-complete.

Fact

All polymorphisms of \mathbb{K}_n , $n \geq 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \leq i \leq k$ are arbitrary.

э

Fact

All polymorphisms of \mathbb{K}_n , $n \ge 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \le i \le k$ are arbitrary.

Corollary

 $QCSP(\mathbb{A})$ is Pspace-complete when all $f \in s - Pol(\mathbb{A})$ are essentially unary (= \mathbb{A} is idempotent-trivial when \mathbb{A} is core).

Fact

All polymorphisms of \mathbb{K}_n , $n \ge 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \le i \le k$ are arbitrary.

Corollary

 $QCSP(\mathbb{A})$ is Pspace-complete when all $f \in s - Pol(\mathbb{A})$ are essentially unary (= \mathbb{A} is idempotent-trivial when \mathbb{A} is core).

Theorem (Larose, 2006)

Any tournament \mathbb{T} with loops and all constants added is either idempotent trivial or transitive. In the second case it easily follows that $QCSP(\mathbb{T}) \in P$.

< □ > < 凸

Fact

All polymorphisms of \mathbb{K}_n , $n \ge 3$ are of the form $f(x_1, \ldots, x_k) = \pi(x_i)$, where $\pi \in Sym(n)$ and $1 \le i \le k$ are arbitrary.

Corollary

 $QCSP(\mathbb{A})$ is Pspace-complete when all $f \in s - Pol(\mathbb{A})$ are essentially unary (= \mathbb{A} is idempotent-trivial when \mathbb{A} is core).

Theorem (Larose, 2006)

Any tournament \mathbb{T} with loops and all constants added is either idempotent trivial or transitive. In the second case it easily follows that $QCSP(\mathbb{T}) \in P$.

Theorem (Dapić, - & Martin - see Petar's talk)

All smooth semicomplete digraphs are idempotent-trivial, except \mathbb{K}_2 and \mathbb{C}_3 .

Figure : $\mathbb{C}_{m,n}$

Petar Marković (Novi Sad)

э

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ (1 < m < n) be the digraph drawn on the above picture.

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ (1 < m < n) be the digraph drawn on the above picture. If m|n then $QCSP(\mathbb{C}_{m,n}) \in P$,

Petar Marković (Novi Sad)

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ (1 < m < n) be the digraph drawn on the above picture. If m|n then $QCSP(\mathbb{C}_{m,n}) \in P$, If (m, n) > 1 and $m \nmid n$, then $QCSP(\mathbb{C}_{m,n})$ is NP-complete,

Figure : $\mathbb{C}_{m,n}$

Example (Bašić, - & Martin)

Let $\mathbb{C}_{m,n}$ (1 < m < n) be the digraph drawn on the above picture. If m|n then $QCSP(\mathbb{C}_{m,n}) \in P$, If (m, n) > 1 and $m \nmid n$, then $QCSP(\mathbb{C}_{m,n})$ is NP-complete, If (m, n) = 1 then $\mathbb{C}_{m,n}$ is idempotent-trivial and so $QCSP(\mathbb{C}_{m,n})$ is Pspace-complete.

Petar Marković (Novi Sad)

Chen's collapsibility and switchability

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is k-collapsible if for all n > k, **A**ⁿ is generated by all *n*-tuples in which there are at least n - k coordinates which are equal.

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is k-collapsible if for all n > k, **A**ⁿ is generated by all *n*-tuples in which there are at least n - k coordinates which are equal.

Definition (Switch)

A tuple $(a_1, \ldots, a_n) \in A^n$ has a *switch* at *i* if $a_{i-1} \neq a_i$.

A B b A B b

The collapsibility given below is not the original definition, but an equivalent over idempotent finite algebras:

Definition (Collapsibility)

An algebra **A** is k-collapsible if for all n > k, **A**ⁿ is generated by all *n*-tuples in which there are at least n - k coordinates which are equal.

Definition (Switch)

A tuple $(a_1, \ldots, a_n) \in A^n$ has a *switch* at *i* if $a_{i-1} \neq a_i$.

Definition (Switchability)

An algebra **A** is *k*-switchable if for all n > k, **A**^{*n*} is generated by all *n*-tuples with at most *k* switches. **A** is switchable if it is *k*-switchable for some *k*.

9 / 12

< 日 > < 同 > < 三 > < 三 >

Image: A matrix

æ

Definition (PGP and EGP)

A finite algebra **A** has polynomially generated powers (PGP) if there exists a polynomial p(x) such that for all n, **A**ⁿ is generated by some set of tuples with at most p(n) elements. **A** has exponentially generated powers (EGP) if there exists a constant c > 0 such that for almost all n, any generating set of **A**ⁿ has more than 2^{cn} elements.

Definition (PGP and EGP)

A finite algebra **A** has *polynomially generated powers* (PGP) if there exists a polynomial p(x) such that for all n, **A**ⁿ is generated by some set of tuples with at most p(n) elements. **A** has *exponentially generated powers* (EGP) if there exists a constant c > 0 such that for almost all n, any generating set of **A**ⁿ has more than 2^{cn} elements.

Theorem (Zhuk 2015)

Let **A** be a finite algebra. Then either **A** is switchable, or **A** has EGP.

Definition (PGP and EGP)

A finite algebra **A** has *polynomially generated powers* (PGP) if there exists a polynomial p(x) such that for all n, **A**ⁿ is generated by some set of tuples with at most p(n) elements. **A** has *exponentially generated powers* (EGP) if there exists a constant c > 0 such that for almost all n, any generating set of **A**ⁿ has more than 2^{cn} elements.

Theorem (Zhuk 2015)

Let **A** be a finite algebra. Then either **A** is switchable, or **A** has EGP.

It is easy to show that collapsibility implies switchability, which implies PGP. So the above theorem gives a dichotomy between PGP and EGP for finite algebras.

10 / 12

< 日 > < 同 > < 回 > < 回 > < 回 > <

Applications to QCSP

Theorem (Chen)

Let A be a finite idempotent algebra. Switchability of A implies that $QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$ for any relational structure \mathbb{A} which consists of relations in $Inv(\mathbf{A})$.

Applications to QCSP

Theorem (Chen)

Let A be a finite idempotent algebra. Switchability of A implies that $QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$ for any relational structure \mathbb{A} which consists of relations in $Inv(\mathbf{A})$.

HOWEVER:

Theorem (Chen)

Let **A** be a finite idempotent algebra. Switchability of **A** implies that $QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$ for any relational structure \mathbb{A} which consists of relations in $Inv(\mathbf{A})$.

HOWEVER:

Example [Zhuk]

There exists a finite relational structure \mathbb{A} such that $QCSP(\mathbb{A})$ is in P, while the algebra $Pol(\mathbb{A})$ has EGP.

Theorem (Chen)

Let **A** be a finite idempotent algebra. Switchability of **A** implies that $QCSP(\mathbb{A})$ reduces to $CSP(\mathbb{A})$ for any relational structure \mathbb{A} which consists of relations in $Inv(\mathbf{A})$.

HOWEVER:

Example [Zhuk]

There exists a finite relational structure \mathbb{A} such that $QCSP(\mathbb{A})$ is in P, while the algebra $Pol(\mathbb{A})$ has EGP.

Also, Martin and Zhuk (2015) proved that on three-element idempotent algebras which have no type $\mathbf{1}$ covers, finite relatedness and switchability imply collapsibility. They conjecture that the same holds for all idempotent algebras which omit type $\mathbf{1}$.

DĚKUJI ZA POZORNOST!

æ

(3)