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Group classes

Theorem (Atkinson, Beals)

If C is a permutation class in which every level C(n) is a permutation
group, then the level sequence C(1),C(2), . . . eventually coincides with
one of the following families of groups:

(1) the groups Sa,b
n for some fixed a,b ∈ N+,

(2) the natural cyclic groups Zn,
(3) the full symmetric groups Sn,
(4) the groups 〈Gn, δn〉, where (Gn)n∈N is one of the above families

(with a = b in (1)).

δn = n(n − 1) . . . 21 descending permutation
ζn = (1 2 · · · n) = 23 . . . n1 natural cycle

Zn = 〈ζn〉 natural cyclic group
Dn = 〈ζn, δn〉 natural dihedral group
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Group classes

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level C(n) is a transitive
group. Then, with the exception of at most two levels, one of the
following holds.
(1) C(n) = Sn for all n ∈ N+.
(2) For some M ∈ N, C(n) = Sn for 1 ≤ n ≤ M, and C(n) = Dn for

n > M.
(3) For some M,N ∈ N with M ≤ N, C(n) = Sn for 1 ≤ n ≤ M,

C(n) = Dn for M + 1 ≤ n ≤ N, and C(n) = Zn for n > N.
The exceptions, if any, may occur in the second and third cases and
are of the following two possible types:

(i) C(M+1) = AM+1 and C(M+2) is an anomalous group that is neither
DM+2 nor ZM+2, or

(ii) C(M+1) is a proper overgroup of ZM+1 but is not DM+1.
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Goal

We would like to describe the sequence

G, Comp(n+1) G, Comp(n+2) G, . . .

for an arbitrary group G ≤ Sn.

We would also like to determine how fast this sequence reaches the
asymptotic behaviour predicted by Atkinson and Beals’s results.
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Roadmap

Sn, 〈δn〉, trivial
An

ζn ∈ G and An � G
ζn /∈ G:

intransitive
transitive:

imprimitive
primitive

ιn = 12 . . . n ascending (identity) permutation
δn = n(n − 1) . . . 21 descending permutation
ζn = (1 2 · · · n) = 23 . . . n1 natural cycle

Zn = 〈ζn〉 natural cyclic group
Dn = 〈ζn, δn〉 natural dihedral group
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Simple observations

Lemma

Let n,m ∈ N+ with n ≤ m. Let G ≤ Sn. Then δm ∈ Comp(m) G if and
only if δn ∈ G.

Lemma

Let G ≤ Sn.
(a) The following statements are equivalent.

(i) Zn ≤ G.
(ii) Zn+1 ≤ Comp(n+1) G.

(iii) Comp(n+1) G contains a permutation π ∈ Zn+1 \ {ιn+1}.
(b) The following statements are equivalent.

(i) Dn ≤ G.
(ii) Dn+1 ≤ Comp(n+1) G.

(iii) Comp(n+1) G contains a permutation π ∈ Dn+1 \ (Zn+1 ∪ {δn+1}).
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Symmetric, trivial, . . .

Theorem

The following statements hold for all n ∈ N+.
(a) Comp(n+1) Sn = Sn+1.

(b) If n ≥ 2, then Comp(n+1) {ιn} = {ιn+1}.
(c) If n ≥ 3, then Comp(n+1) 〈δn〉 = 〈δn+1〉.
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Notation

Let Π be a partition of [n].

SΠ := {π ∈ Sn | ∀B ∈ Π: π(B) = B}
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Alternating groups
Œn+1 – partition of [n + 1] into odd and even numbers
SŒn+1 – permutations preserving blocks of Œn+1
WŒn+1 – permutations interchanging blocks of Œn+1
An+1 – even permutations
On+1 – odd permutations

Theorem

Comp(n+1) An = (SŒn+1 ∩ An+1) ∪ (WŒn+1 ∩On+1).

Theorem

Comp(n+2) An =


〈δn+2〉, if n ≡ 0 (mod 4),
Zn+2, if n ≡ 1 (mod 4),
{ιn+2}, if n ≡ 2 (mod 4),
Dn+2, if n ≡ 3 (mod 4).
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Groups containing the natural cycle

Theorem

Let G ≤ Sn, and assume that G contains the natural cycle ζn.

(i) If Dn ≤ G and G /∈ {Sn,An}, then Comp(n+1) G = Dn+1.

(ii) If Dn � G, then Comp(n+1) G = Zn+1.

E. Lehtonen (TU Dresden) Permutation classes 27–29 May 2016 12 / 20



Intransitive groups

Let G ≤ Sn be an intransitive group.

Then G ≤ SOrb G, where Orb G be the set of orbits of G.

Moreover, Orb G is the finest partition Π such that G ≤ SΠ.
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Intransitive groups

Let Π be a partition of [n].
Π = {{1,2,3,7,8,9,10}, {4,5,6,12,13,14}, {11}}

Define the partition Π′ of [n + 1] as follows.

Let IΠ be the coarsest interval partition that refines Π.
IΠ = {{1,2,3}, {4,5,6}, {7,8,9,10}, {11}, {12,13,14}}

For each [a,b] ∈ IΠ, we let {a} and [a + 1,b] be blocks of Π′.

Exceptions:
If a = 1 and b 6= n, then [a,b] is a block of Π′.
If a 6= 1 and b = n, then {a} and [a + 1,n + 1] are blocks of Π′.
If a = 1 and b = n, then [1,n + 1] is a block of Π′.
Π′ = {{1,2,3}, {4}, {5,6}, {7}, {8,9,10}, {11}, {12}, {13,14,15}}
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Intransitive groups

Theorem

Let Π be a partition of [n]. Then, for all i ≥ 1, we have

Comp(n+i) SΠ =

{
SΠ(i) , if δn /∈ SΠ,
〈SΠ(i) , δn+1〉, if δn ∈ SΠ.

Π(1) := Π′

Π(i+1) := (Π(i))′ (i ≥ 1)
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Intransitive groups

Theorem

Let G ≤ Sn be an intransitive group, and let Π := Orb G. Let a and b be
the largest numbers α and β, respectively, such that Sα,β

n ≤ G. Then
for all ` ≥ Ma,b(Π), it holds that Comp(n+`) G = Sa,b

n+` or
Comp(n+`) G = 〈Sa,b

n+`, δn+`〉.

M(Π) := max({|B| : B ∈ I−Π } ∪ {1})
Ma,b(Π) := max(M(Π), |1/IΠ| − a + 1, |n/IΠ| − b + 1)
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Notation

Let Π be a partition of [n].

Aut Π := {π ∈ Sn | ∀B ∈ Π: π(B) ∈ Π}
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Imprimitive groups

Theorem

Let Π be a partition of [n] with no trivial blocks. Then

Comp(n+1) Aut Π =

{
〈SΠ′ ,EΠ〉, if δn /∈ Aut Π,
〈SΠ′ ,EΠ, δn+1〉, if δn ∈ Aut Π,

where EΠ is the following set of permutations:

If [1, `] ∝ Π for some ` with 1 < ` < n, then ν(n+1)
` ∈ EΠ.

If [m,n] ∝ Π for some m with 1 < m < n, then λ(n+1)
n−m+1 ∈ EΠ.

If [1,n] ∝ Π, then ζn+1 ∈ EΠ.
EΠ does not contain any other elements.
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Primitive groups

Theorem

Assume that G ≤ Sn is a primitive group such that ζn /∈ G and An � G.

(i) (a) n = 6

G Comp(n+1) G

〈(1 2 3 4), (3 4 5 6)〉 {1234567, 2154376, 6734512, 7654321}
〈(1 2 3 4), (2 3 4 5 6)〉 {1234567, 1276543, 1543276, 1567234}
〈(1 2 3 4 5), (3 4 5 6)〉 {1234567, 2165437, 4561237, 5432167}
〈(1 2 3 4 5), (1 3 4)(2 5 6)〉 〈ν(7)

5 〉
〈(2 3 4 5 6), (1 2 5)(3 4 6)〉 〈λ(7)

5 〉

(b) n 6= 6

G Comp(n+1) G G Comp(n+1) G

D[1,n−1] ≤ G 〈ν(n+1)
n−1 〉 D[2,n] ≤ G 〈λ(n+1)

n−1 〉
D[1,n−2] ≤ G 〈ν(n+1)

n−2 〉 D[3,n] ≤ G 〈λ(n+1)
n−2 〉

(c) Otherwise Comp(n+1) G ≤ 〈δn+1〉.
(ii) Comp(n+2) G ≤ 〈δn+2〉.
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The end

Thank you!
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