Permutation classes closed under pattern involvement and composition

Erkko Lehtonen

Institut für Algebra Technische Universität Dresden Erkko.Lehtonen@tu-dresden.de

> AAA92, Prague 27–29 May 2016

M. D. ATKINSON, R. BEALS, Permuting mechanisms and closed classes of permutations, in: C. S. Calude, M. J. Dinneen (eds.), *Combinatorics, Computation & Logic,* Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117–127.

M. D. ATKINSON, R. BEALS, Permutation involvement and groups, *Q. J. Math.* **52** (2001) 415–421.

Theorem (Atkinson, Beals)

If C is a permutation class in which every level C(*n*) *is a permutation group, then the level sequence C*(1) , *C* (2) , . . . *eventually coincides with one of the following families of groups:*

- (1) *the groups* $S_n^{a,b}$ for some fixed $a, b \in \mathbb{N}_+$,
- (2) *the natural cyclic groups Zn,*
- (3) *the full symmetric groups Sn,*
- (4) *the groups* $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ *is one of the above families* $(with a = b in (1)).$ $(with a = b in (1)).$ $(with a = b in (1)).$

 $\delta_n = n(n-1) \dots 21$ descending permutation $\zeta_n = (1 \ 2 \ \cdots \ n) = 23 \dots n1$ natural cycle

 $Z_n = \langle \zeta_n \rangle$ natural cyclic group $D_n = \langle \zeta_n, \delta_n \rangle$ natural dihedral group

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level C(*n*) *is a transitive group. Then, with the exception of at most two levels, one of the following holds.*

- (1) $C^{(n)} = S_n$ for all $n \in \mathbb{N}_+$.
- (2) *For some M* \in N, $C^{(n)} = S_n$ *for* $1 \le n \le M$, and $C^{(n)} = D_n$ *for* $n > M$.
- (3) *For some M, N* \in *N with M* \leq *N, C*^(*n*) = *S_n for* 1 \leq *n* \leq *M*, $C^{(n)} = D_n$ for $M + 1 \le n \le N$, and $C^{(n)} = Z_n$ for $n > N$.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:

(i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither *DM*+² *nor ZM*+2*, or*

(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

We would like to describe the sequence

$$
G
$$
, Comp⁽ⁿ⁺¹⁾, G , Comp⁽ⁿ⁺²⁾, G , ...

for an arbitrary group $G < S_n$.

We would also like to determine how fast this sequence reaches the asymptotic behaviour predicted by Atkinson and Beals's results.

- E. LEHTONEN, R. PÖSCHEL, Permutation groups, pattern involvement, and Galois connections, arXiv:1605.04516.
- E. LEHTONEN, Permutation groups arising from pattern involvement, arXiv:1605.05571.

Roadmap

- S_n , $\langle \delta_n \rangle$, trivial
- *An*
- $\zeta_n \in G$ and $\overline{A}_n \nleq G$
- \bullet $\zeta_n \notin G$:
	- **•** intransitive
	- **e** transitive:
		- imprimitive
		- **•** primitive

 $\delta_n = n(n-1) \dots 21$ descending permutation $\zeta_n = (1 \ 2 \ \cdots \ n) = 23 \ \cdots \ n1$ natural cycle

 $\iota_n = 12...n$ ascending (identity) permutation

 $Z_n = \langle \zeta_n \rangle$ natural cyclic group
 $D_n = \langle \zeta_n, \delta_n \rangle$ natural dihedral aro *natural dihedral group*

Lemma

Let n, m \in N₊ *with n* \leq *m. Let G* \leq *S_n. Then* δ_m \in Comp^(*m*) *G if and only if* $\delta_n \in G$.

Lemma

 $Let G < S_n$.

(a) *The following statements are equivalent.*

(i)
$$
Z_n \leq G
$$
.

$$
(ii) Z_{n+1} \leq \text{Comp}^{(n+1)} G.
$$

(iii) Comp^{$(n+1)$} *G* contains a permutation $\pi \in Z_{n+1} \setminus \{t_{n+1}\}.$

(b) *The following statements are equivalent.*

(i)
$$
D_n \leq G
$$
.

$$
(ii) D_{n+1} \leq \text{Comp}^{(n+1)} G.
$$

(iii) Comp^{$(n+1)$} *G* contains a permutation $\pi \in D_{n+1} \setminus (Z_{n+1} \cup \{\delta_{n+1}\}).$

The following statements hold for all n \in N₊. (a) Comp^{$(n+1)$} $S_n = S_{n+1}$. (b) If $n \ge 2$, then Comp⁽ⁿ⁺¹⁾ { ι_n } = { ι_{n+1} }. (c) If $n \geq 3$, then Comp^{$(n+1)$} $\langle \delta_n \rangle = \langle \delta_{n+1} \rangle$.

Let Π be a partition of [*n*].

$$
S_{\Pi}:=\{\pi\in S_n\mid \forall B\in \Pi\colon \pi(B)=B\}
$$

Alternating groups

 E_{n+1} – partition of $[n+1]$ into odd and even numbers $S_{\mathcal{C}\!\!E}_{n+1}$ – permutations preserving blocks of $\mathcal{C}\!\!E_{n+1}$ $W_{\mathcal{C}_{n+1}}$ – permutations interchanging blocks of \mathcal{C}_{n+1} A_{n+1} – even permutations O_{n+1} – odd permutations

Theorem

Comp⁽ⁿ⁺¹⁾
$$
A_n = (S_{\mathbb{G}_{n+1}} \cap A_{n+1}) \cup (W_{\mathbb{G}_{n+1}} \cap O_{n+1}).
$$

Theorem

Comp
$$
(n+2)
$$
 $A_n = \begin{cases} \langle \delta_{n+2} \rangle, & \text{if } n \equiv 0 \pmod{4}, \\ Z_{n+2}, & \text{if } n \equiv 1 \pmod{4}, \\ \{\iota_{n+2}\}, & \text{if } n \equiv 2 \pmod{4}, \\ D_{n+2}, & \text{if } n \equiv 3 \pmod{4}. \end{cases}$

Let $G \leq S_n$, and assume that G contains the natural cycle ζ_n . (i) *If* $D_n \le G$ and $G \notin \{S_n, A_n\}$, then Comp^{$(n+1)$} $G = D_{n+1}$. (ii) *If* $D_n \nleq G$, then Comp^{$(n+1)$} $G = Z_{n+1}$.

- Let $G \leq S_n$ be an intransitive group.
- Then $G \leq S_{Orb,G}$, where Orb *G* be the set of orbits of *G*.
- Moreover, Orb *G* is the finest partition Π such that $G \leq S_{\Pi}$.

Define the partition Π' of $[n+1]$ as follows.

Let *I*^Π be the coarsest interval partition that refines Π. *I*^Π = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11}, {12, 13, 14}}

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and $[a + 1, b]$ be blocks of $\Pi'.$

Exceptions:

If $a = 1$ and $b \neq n$, then $[a, b]$ is a block of Π'.

If $a \neq 1$ and $b = n$, then $\{a\}$ and $[a + 1, n + 1]$ are blocks of Π' .

If $a = 1$ and $b = n$, then $[1, n + 1]$ is a block of Π' .

Define the partition Π' of $[n+1]$ as follows.

Let *I*^Π be the coarsest interval partition that refines Π. *I*^Π = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11}, {12, 13, 14}}

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and $[a + 1, b]$ be blocks of $\Pi'.$

Exceptions:

If $a = 1$ and $b \neq n$, then $[a, b]$ is a block of Π'.

If $a \neq 1$ and $b = n$, then $\{a\}$ and $[a + 1, n + 1]$ are blocks of Π' .

If $a = 1$ and $b = n$, then $[1, n + 1]$ is a block of Π' .

Define the partition Π' of $[n+1]$ as follows.

Let *I*^Π be the coarsest interval partition that refines Π. *I*^Π = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11}, {12, 13, 14}}

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and $[a + 1, b]$ be blocks of $\Pi'.$

Exceptions:

If $a = 1$ and $b \neq n$, then $[a, b]$ is a block of Π'.

If $a \neq 1$ and $b = n$, then $\{a\}$ and $[a + 1, n + 1]$ are blocks of Π' .

If $a = 1$ and $b = n$, then $[1, n + 1]$ is a block of Π' .

Define the partition Π' of $[n+1]$ as follows.

Let *I*^Π be the coarsest interval partition that refines Π. *I*^Π = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11}, {12, 13, 14}}

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and $[a + 1, b]$ be blocks of $\Pi'.$

Exceptions:

If $a = 1$ and $b \neq n$, then $[a, b]$ is a block of Π'.

If $a \neq 1$ and $b = n$, then $\{a\}$ and $[a + 1, n + 1]$ are blocks of Π' .

If $a = 1$ and $b = n$, then $[1, n + 1]$ is a block of Π' .

Let Π *be a partition of* [*n*]*. Then, for all i* ≥ 1*, we have*

$$
\operatorname{Comp}^{(n+i)} S_{\Pi} = \begin{cases} S_{\Pi^{(i)}}, & \text{if } \delta_n \notin S_{\Pi}, \\ \langle S_{\Pi^{(i)}}, \delta_{n+1} \rangle, & \text{if } \delta_n \in S_{\Pi}. \end{cases}
$$

 $\Pi^{(1)}:=\Pi'$ $\Pi^{(i+1)} := (\Pi^{(i)})' \quad (i \geq 1)$

Let $G \leq S_n$ *be an intransitive group, and let* $\Pi := \text{Orb } G$. Let a and b be *the largest numbers* α *and* β *, respectively, such that* $\mathbf{S}_n^{\alpha,\beta} \leq G$ *. Then* f *for all* $\ell \geq M_{a,b}(\Pi)$ *, it holds that* $\mathsf{Comp}^{(n+\ell)}$ $G = S_{n+\ell}^{a,b}$ $\int_{n+\ell}^{a,\nu}$ or $\mathsf{Comp}^{(n+\ell)}\,G = \langle S_{n+\ell}^{a,b}\rangle$ $\langle \delta_{n+\ell}^{\mathbf{a},\mathbf{b}}, \delta_{n+\ell} \rangle$.

$$
M(\Pi) := \max(\{|B| : B \in I_{\Pi}^{-}\} \cup \{1\})
$$

$$
M_{a,b}(\Pi) := \max(M(\Pi), |1|/I_{\Pi}| - a + 1, |n|/I_{\Pi}| - b + 1)
$$

Let Π be a partition of [*n*].

$$
\mathsf{Aut}\,\Pi:=\{\pi\in\mathcal{S}_n\mid\forall B\in\Pi\colon \pi(B)\in\Pi\}
$$

Let Π *be a partition of* [*n*] *with no trivial blocks. Then*

$$
Comp^{(n+1)}\text{Aut }\Pi=\begin{cases} \langle S_{\Pi'},E_{\Pi}\rangle, & \text{if $\delta_n\notin\text{Aut }\Pi$,}\\ \langle S_{\Pi'},E_{\Pi},\delta_{n+1}\rangle, & \text{if $\delta_n\in\text{Aut }\Pi$,}\end{cases}
$$

where E_Π is the following set of permutations:

- $\mathsf{f} \mathsf{f}[1,\ell] \propto \Pi$ for some ℓ with $1 < \ell < n$, then $\nu_\ell^{(n+1)} \in E_\Pi$.
- *If* $[m, n] \propto \Pi$ for some m with $1 < m < n$, then $\lambda_{n-m+1}^{(n+1)}$ $\binom{n+1}{n-m+1}$ ∈ **E**_Π.
- \bullet *If* $[1, n] \propto \Pi$, then $\zeta_{n+1} \in E_{\Pi}$.
- *E*^Π *does not contain any other elements.*

Primitive groups

Theorem

 A ssume that $G \leq S_n$ is a primitive group such that $\zeta_n \notin G$ and $A_n \nleq G$.

(i) (a) $n = 6$

 (iii)

Thank you!