Permutation classes closed under pattern involvement and composition

Erkko Lehtonen

Institut für Algebra Technische Universität Dresden Erkko.Lehtonen@tu-dresden.de

AAA92, Prague 27–29 May 2016

M. D. ATKINSON, R. BEALS, Permuting mechanisms and closed classes of permutations, in: C. S. Calude, M. J. Dinneen (eds.), *Combinatorics, Computation & Logic*, Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117–127.

M. D. ATKINSON, R. BEALS, Permutation involvement and groups, *Q. J. Math.* **52** (2001) 415–421.

Theorem (Atkinson, Beals)

If *C* is a permutation class in which every level $C^{(n)}$ is a permutation group, then the level sequence $C^{(1)}, C^{(2)}, \ldots$ eventually coincides with one of the following families of groups:

- (1) the groups $S_n^{a,b}$ for some fixed $a, b \in \mathbb{N}_+$,
- (2) the natural cyclic groups Z_n ,
- (3) the full symmetric groups S_n ,
- (4) the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).

 $\delta_n = n(n-1)\dots 21$ $\zeta_n = (1\ 2\ \cdots\ n) = 23\dots n1$

 $\begin{aligned} \boldsymbol{Z}_{n} &= \langle \zeta_{n} \rangle \\ \boldsymbol{D}_{n} &= \langle \zeta_{n}, \delta_{n} \rangle \end{aligned}$

E. Lehtonen (TU Dresden)

descending permutation natural cycle

natural cyclic group natural dihedral group

Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- (1) $C^{(n)} = S_n$ for all $n \in \mathbb{N}_+$.
- (2) For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- (3) For some $M, N \in \mathbb{N}$ with $M \leq N$, $C^{(n)} = S_n$ for $1 \leq n \leq M$, $C^{(n)} = D_n$ for $M + 1 \leq n \leq N$, and $C^{(n)} = Z_n$ for n > N.

The exceptions, if any, may occur in the second and third cases and are of the following two possible types:

(i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or

(ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

We would like to describe the sequence

$$G$$
, Comp⁽ⁿ⁺¹⁾ G , Comp⁽ⁿ⁺²⁾ G , ...

for an arbitrary group $G \leq S_n$.

We would also like to determine how fast this sequence reaches the asymptotic behaviour predicted by Atkinson and Beals's results.

- E. LEHTONEN, R. PÖSCHEL, Permutation groups, pattern involvement, and Galois connections, arXiv:1605.04516.
- E. LEHTONEN, Permutation groups arising from pattern involvement, arXiv:1605.05571.

Roadmap

- S_n , $\langle \delta_n \rangle$, trivial
- *A*_n
- $\zeta_n \in G$ and $A_n \nleq G$
- ζ_n ∉ G:
 - intransitive
 - transitive:
 - imprimitive
 - primitive

 $\iota_n = 12 \dots n$ $\delta_n = n(n-1) \dots 21$ $\zeta_n = (1 \ 2 \ \cdots \ n) = 23 \dots n1$

 $Z_n = \langle \zeta_n \rangle \\ D_n = \langle \zeta_n, \delta_n \rangle$

ascending (identity) permutation descending permutation natural cycle

natural cyclic group natural dihedral group

Lemma

Let $n, m \in \mathbb{N}_+$ with $n \leq m$. Let $G \leq S_n$. Then $\delta_m \in \text{Comp}^{(m)} G$ if and only if $\delta_n \in G$.

Lemma

- Let $G \leq S_n$.
- (a) The following statements are equivalent.
 - (i) $Z_n \leq G$.
 - (ii) $Z_{n+1} \leq \operatorname{Comp}^{(n+1)} G$.
 - (iii) Comp⁽ⁿ⁺¹⁾ *G* contains a permutation $\pi \in Z_{n+1} \setminus {\iota_{n+1}}$.

(b) The following statements are equivalent.

(i)
$$D_n \leq G$$
.

(ii) $D_{n+1} \leq \operatorname{Comp}^{(n+1)} G.$

(iii) Comp⁽ⁿ⁺¹⁾ *G* contains a permutation $\pi \in D_{n+1} \setminus (Z_{n+1} \cup \{\delta_{n+1}\})$.

The following statements hold for all $n \in \mathbb{N}_+$. (a) $\operatorname{Comp}^{(n+1)} S_n = S_{n+1}$. (b) If $n \ge 2$, then $\operatorname{Comp}^{(n+1)} \{\iota_n\} = \{\iota_{n+1}\}$. (c) If $n \ge 3$, then $\operatorname{Comp}^{(n+1)} \langle \delta_n \rangle = \langle \delta_{n+1} \rangle$.

Let Π be a partition of [n].

$$S_{\Pi} := \{ \pi \in S_n \mid \forall B \in \Pi \colon \pi(B) = B \}$$

Alternating groups

 \mathcal{C}_{n+1} – partition of [n + 1] into odd and even numbers $S_{\mathcal{C}_{n+1}}$ – permutations preserving blocks of \mathcal{C}_{n+1} $W_{\mathcal{C}_{n+1}}$ – permutations interchanging blocks of \mathcal{C}_{n+1} A_{n+1} – even permutations O_{n+1} – odd permutations

Theorem

$$\operatorname{Comp}^{(n+1)} A_n = (S_{\mathcal{C}_{n+1}} \cap A_{n+1}) \cup (W_{\mathcal{C}_{n+1}} \cap O_{n+1}).$$

Theorem

$$\operatorname{Comp}^{(n+2)} A_{n} = \begin{cases} \langle \delta_{n+2} \rangle, & \text{if } n \equiv 0 \pmod{4}, \\ Z_{n+2}, & \text{if } n \equiv 1 \pmod{4}, \\ \{\iota_{n+2}\}, & \text{if } n \equiv 2 \pmod{4}, \\ D_{n+2}, & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Let $G \leq S_n$, and assume that G contains the natural cycle ζ_n . (i) If $D_n \leq G$ and $G \notin \{S_n, A_n\}$, then $\operatorname{Comp}^{(n+1)} G = D_{n+1}$. (ii) If $D_n \nleq G$, then $\operatorname{Comp}^{(n+1)} G = Z_{n+1}$.

- Let $G \leq S_n$ be an intransitive group.
- Then $G \leq S_{\text{Orb }G}$, where Orb G be the set of orbits of G.
- Moreover, Orb *G* is the finest partition Π such that $G \leq S_{\Pi}$.

Define the partition Π' of [n + 1] as follows.

Let I_{Π} be the coarsest interval partition that refines Π . $I_{\Pi} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9, 10\}, \{11\}, \{12, 13, 14\}\}$

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and [a + 1, b] be blocks of Π' .

Exceptions:

If a = 1 and $b \neq n$, then [a, b] is a block of Π' .

If $a \neq 1$ and b = n, then $\{a\}$ and [a + 1, n + 1] are blocks of Π' .

If a = 1 and b = n, then [1, n + 1] is a block of Π' .

Define the partition Π' of [n + 1] as follows.

Let I_{Π} be the coarsest interval partition that refines Π . $I_{\Pi} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9, 10\}, \{11\}, \{12, 13, 14\}\}$

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and [a + 1, b] be blocks of Π' .

Exceptions:

If a = 1 and $b \neq n$, then [a, b] is a block of Π' .

If $a \neq 1$ and b = n, then $\{a\}$ and [a + 1, n + 1] are blocks of Π' .

If a = 1 and b = n, then [1, n + 1] is a block of Π' .

Define the partition Π' of [n + 1] as follows.

Let I_{Π} be the coarsest interval partition that refines Π . $I_{\Pi} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9, 10\}, \{11\}, \{12, 13, 14\}\}$

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and [a + 1, b] be blocks of Π' . Exceptions:

If a = 1 and $b \neq n$, then [a, b] is a block of Π' .

If $a \neq 1$ and b = n, then $\{a\}$ and [a + 1, n + 1] are blocks of Π' .

If a = 1 and b = n, then [1, n + 1] is a block of Π' .

Define the partition Π' of [n + 1] as follows.

Let I_{Π} be the coarsest interval partition that refines Π . $I_{\Pi} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9, 10\}, \{11\}, \{12, 13, 14\}\}$

For each $[a, b] \in I_{\Pi}$, we let $\{a\}$ and [a + 1, b] be blocks of Π' . Exceptions:

If a = 1 and $b \neq n$, then [a, b] is a block of Π' .

If $a \neq 1$ and b = n, then $\{a\}$ and [a + 1, n + 1] are blocks of Π' .

If a = 1 and b = n, then [1, n + 1] is a block of Π' .

Let Π be a partition of [n]. Then, for all $i \ge 1$, we have

$$\operatorname{Comp}^{(n+i)} S_{\Pi} = \begin{cases} S_{\Pi^{(i)}}, & \text{if } \delta_n \notin S_{\Pi}, \\ \langle S_{\Pi^{(i)}}, \delta_{n+1} \rangle, & \text{if } \delta_n \in S_{\Pi}. \end{cases}$$

 $\begin{aligned} \Pi^{(1)} &:= \Pi' \\ \Pi^{(i+1)} &:= (\Pi^{(i)})' \quad (i \geq 1) \end{aligned}$

Let $G \leq S_n$ be an intransitive group, and let $\Pi := \text{Orb } G$. Let a and b be the largest numbers α and β , respectively, such that $S_n^{\alpha,\beta} \leq G$. Then for all $\ell \geq M_{a,b}(\Pi)$, it holds that $\text{Comp}^{(n+\ell)} G = S_{n+\ell}^{a,b}$ or $\text{Comp}^{(n+\ell)} G = \langle S_{n+\ell}^{a,b}, \delta_{n+\ell} \rangle$.

$$\begin{split} M(\Pi) &:= \max(\{|B| : B \in I_{\Pi}^{-}\} \cup \{1\}) \\ M_{a,b}(\Pi) &:= \max(M(\Pi), |1/I_{\Pi}| - a + 1, |n/I_{\Pi}| - b + 1) \end{split}$$

Let Π be a partition of [n].

Aut
$$\Pi := \{ \pi \in S_n \mid \forall B \in \Pi \colon \pi(B) \in \Pi \}$$

Let Π be a partition of [n] with no trivial blocks. Then

$$\operatorname{Comp}^{(n+1)}\operatorname{Aut}\Pi = \begin{cases} \langle S_{\Pi'}, E_{\Pi} \rangle, & \text{if } \delta_n \notin \operatorname{Aut}\Pi, \\ \langle S_{\Pi'}, E_{\Pi}, \delta_{n+1} \rangle, & \text{if } \delta_n \in \operatorname{Aut}\Pi, \end{cases}$$

where E_{Π} is the following set of permutations:

- If $[1, \ell] \propto \Pi$ for some ℓ with $1 < \ell < n$, then $\nu_{\ell}^{(n+1)} \in E_{\Pi}$.
- If $[m, n] \propto \Pi$ for some m with 1 < m < n, then $\lambda_{n-m+1}^{(n+1)} \in E_{\Pi}$.
- If $[1, n] \propto \Pi$, then $\zeta_{n+1} \in E_{\Pi}$.
- E_Π does not contain any other elements.

Primitive groups

Theorem

(ii) C

Assume that $G \leq S_n$ is a primitive group such that $\zeta_n \notin G$ and $A_n \nleq G$.

(i) (a) n = 6

	G		$\operatorname{Comp}^{(n+1)} G$			
	⟨(1 2 3 4), (3 4 5 6)⟩		$\{1234567, 2154376, 6734512, 7654321\}$			
	$\langle (1 2 3 4), (2 3 4 5 6) \rangle$		{1234567, 1276543, 1543276, 1567234}			
	((1 2 3 4 5), (3 4 5 6)) ((1 2 3 4 5), (1 3 4)(2 5 6))		{1234567,2165437,4561237,5432167} /, ⁽⁷⁾ \			
	((123456), (134)(230))		$\langle \nu_5 \rangle$ $\langle \lambda^{(7)} \rangle$			
	(23430),(1 2 3)(3 4 0)/	\^5 /			
(b) $n \neq 6$						
	G	$\operatorname{Comp}^{(n+1)} G$	G	Comp ⁽ⁿ⁺¹⁾ C	ì	
	$D_{[1,n-1]} \leq G$	$\langle \nu_{n-1}^{(n+1)} \rangle$	$D_{[2,n]} \leq G$	$\langle \lambda_{n-1}^{(n+1)} \rangle$	_	
	$D_{[1,n-2]} \leq G$	$\langle \nu_{n-2}^{(n+1)} angle$	$D_{[3,n]} \leq G$	$\langle \lambda_{n-2}^{(n+1)} angle$		
(c) Otherwise Comp ⁽ⁿ⁺¹⁾ $G \leq \langle \delta_{n+1} \rangle$.					_	
) $\operatorname{Comp}^{(n+2)} \boldsymbol{G} \leq \langle \delta_{n+2} \rangle.$						
E. Lehtonen (TU Dresden) Perm			utation classes		27–29 May 2016	19

Thank you!