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Birkhoff-style characterization: such and such sublattices are
forbidden, e.g.:

Theorem [Dedekind 1900, Birkhoff 1934]. A lattice is
distributive iff there are no sublattices isomorphic to N
(pentagon) nor M3 (diamond).

Ward-style characterization: such and such cover-preserving
sublattices are forbidden, eg.:

Theorem [Ward 1939]. Let L be a finite modular lattice. L is
distributive iff there is no cover-preserving sublattice isomorphic to
Ms.
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A lattice L is upper continuous iff L is complete and for every
element x € L and every chain C C L:

xAN\/C=\/{xrc:ceC} (UQ)

A lattice L is strongly atomic iff

(Vx,y el)(x<y=(Bzel)(x=<z<y)) (SA)

Fact.
» Ascending chain condition = (UC)
» Descending chain condition = (SA)
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Theorem [Jakubik 1975]. Let L be a lattice of locally finite
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1. L is modular,
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Theorem [Sik 197?]. Let L be a lattice of locally finite length
satisfying (Sm). Then the following conditions are equivalent:

1. L is modular,

2.5 AL

'Every bounded chain is finite.
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Let L be a lattice satisfying (UC) and (SA). Then the following
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The extension of Jakubik's Theorem is not true

Let L be a lattice satisfying (UC) and (SA). Then the following
conditions are equivalent:

1. L is modular,
2. 57,5, Nmpn AL (for m>4,n>3).

Lo > (UC) and (SA)

» non-modular ((Sm) is violated)
> 57,55, Nmn AL (for m>4,n>3).
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Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:
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The idea of the proof of (2) = (1).
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Corollary. If L satisfies (UC), (SA), and (Sm) then the following
conditions are equivalent:

(/) Lis modular,

(i) every interval of finite length of L is modular.
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...and distribitivity

Theorem [tazarz, Siemieniczuk 2015].
(UC), (SA), modularity = (L is distributive < M; 4 L)

Corollary. If a modular lattice L satisfies (UC), (SA) then the
following conditions are equivalent:

(1) L is distributive,

(i) every interval of finite length of L is distributive.
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