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Sublattices vs cover-preserving sublattices

Definition. A sublattice K of a lattice L is said to be a
cover-preserving sublattice, K ≺ L, iff:

x ≺ y in K ⇒ x ≺ y in L, for all x , y ∈ L.
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Two kinds of characterizations in lattice theory

Birkhoff-style characterization: such and such sublattices are
forbidden, e.g.:

Theorem [Dedekind 1900, Birkhoff 1934]. A lattice is
distributive iff there are no sublattices isomorphic to N5

(pentagon) nor M3 (diamond).

Ward-style characterization: such and such cover-preserving
sublattices are forbidden, eg.:

Theorem [Ward 1939]. Let L be a finite modular lattice. L is
distributive iff there is no cover-preserving sublattice isomorphic to
M3.
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Upper continuous and strongly atomic lattices

A lattice L is upper continuous iff L is complete and for every
element x ∈ L and every chain C ⊆ L:

x ∧
∨

C =
∨
{x ∧ c : c ∈ C} (UC)

A lattice L is strongly atomic iff

(∀x , y ∈ L)
(
x < y ⇒ (∃z ∈ L)(x ≺ z ≤ y)

)
(SA)

Fact.

I Ascending chain condition ⇒ (UC)

I Descending chain condition ⇒ (SA)
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Modularity in upper continuous and strongly atomic
lattices

Theorem [Birkhoff 1933, Crawley–Dilworth 1973].
If lattice L satisfies (UC) and (SA) then the following conditions
are equivalent:

1. L is modular,

2. L satisfies (Sm) and (Sm∗),

where:

(∀x , y ∈ L)(x ∧ y ≺ x ⇒ y ≺ x ∨ y) (Sm)

(∀x , y ∈ L)(y ≺ x ∨ y ⇒ x ∧ y ≺ x) (Sm∗)
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J. Jakub́ık and F. Šik’s Characterizations of Modularity

Theorem [Jakub́ık 1975]. Let L be a lattice of locally finite
length.1 Then the following conditions are equivalent:

1. L is modular,

2. S7,S
∗
7 ,Nm,n 6≺ L (for m ≥ 4, n ≥ 3).

Theorem [Šik 197?]. Let L be a lattice of locally finite length
satisfying (Sm). Then the following conditions are equivalent:

1. L is modular,

2. S7 6≺ L.

1Every bounded chain is finite.
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The extension of Jakub́ık’s Theorem is not true

Let L be a lattice satisfying (UC) and (SA). Then the following
conditions are equivalent:

1. L is modular,

2. S7,S
∗
7 ,Nm,n 6≺ L (for m ≥ 4, n ≥ 3).
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∗
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The extension of Šik’s Theorem

Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:

1. L is modular,
2. S7 6≺ L.

The idea of the proof of (2)⇒ (1).
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Suppose that L is not modular

By Zorn Lemma there is the “smallest”
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Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:

1. L is modular,
2. S7 6≺ L.

The idea of the proof of (2)⇒ (1).

t
t

tt
t

@
@

@
@

@
@
@

@

�
�
�

�
�
�

@
@
@

@

@
@

@
@

�
�
t

�
�

�
�
@
@
@

@
�
�
�
�
t�

�
�
�
t

�
�
�
�

�
�
�
�

�
�

t
�
�

�
�
@

@
@
@

@
@

@
@

Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the “smallest”
pentagon (see figure)

Construction of S7...

�



The extension of Šik’s Theorem
Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:

1. L is modular,
2. S7 6≺ L.

The idea of the proof of (2)⇒ (1).

t
t

tt
t

@
@

@
@

@
@
@

@

�
�
�

�
�
�

@
@
@

@

@
@

@
@

�
�
t

�
�

�
�
@
@
@

@
�
�
�
�
t�

�
�
�
t

�
�
�
�

�
�
�
�

�
�

t
�
�

�
�
@

@
@
@

@
@

@
@

Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the “smallest”
pentagon (see figure)

Construction of S7...

�



The extension of Šik’s Theorem
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Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:

1. L is modular,
2. S7 6≺ L.

The idea of the proof of (2)⇒ (1).

t
t

tt
t

@
@

@
@

@
@
@

@

�
�
�

�
�
�

@
@
@

@

@
@

@
@

�
�

t
�
�

�
�
@
@
@

@
�
�
�
�
t

�
�
�
�

t
�
�
�
�

�
�
�
�

�
�

t
�
�

�
�
@

@
@
@

@
@

@
@

Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the “smallest”
pentagon (see figure)

Construction of S7...

�



The extension of Šik’s Theorem
Theorem. Let L be a lattice satisfying (UC), (SA), and (Sm).
Then the following conditions are equivalent:

1. L is modular,
2. S7 6≺ L.

The idea of the proof of (2)⇒ (1).
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Suppose that L is not modular

By Zorn Lemma there is the “smallest”
pentagon (see figure)
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Summary

The extension of Jakub́ık’s Theorem is not true:
(UC), (SA) ⇒

(
L is modular ⇔ S7,S

∗
7 ,Nm,n 6≺ L

)

The extension of Šik’s Theorem.
(UC), (SA), (Sm) ⇒

(
L is modular ⇔ S7 6≺ L

)
The “dual” theorem is not true:
(UC), (SA), (Sm∗) ⇒

(
L is modular ⇔ S∗

7 6≺ L
)
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(UC), (SA), (Sm) ⇒

(
L is modular ⇔ S7 6≺ L

)

The “dual” theorem is not true:
(UC), (SA), (Sm∗) ⇒

(
L is modular ⇔ S∗

7 6≺ L
)

ttt
ttq
qqt

ttt
ttq
qqt
t

ttt
ttq
qqt

��HH
�
�

H
H ��HH

��HH
H

H
�
�

HH ��
�� HH



Summary

The extension of Jakub́ık’s Theorem is not true:
(UC), (SA) ⇒

(
L is modular ⇔ S7,S

∗
7 ,Nm,n 6≺ L

)
The extension of Šik’s Theorem.
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Applications: “finitary” description of modularity...

Corollary. If L satisfies (UC), (SA), and (Sm) then the following
conditions are equivalent:

(i) L is modular,

(ii) every interval of finite length of L is modular.
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...and distribitivity

Theorem [ Lazarz, Siemieńczuk 2015].

(UC), (SA), modularity ⇒
(
L is distributive ⇔ M3 6≺ L

)
Corollary. If a modular lattice L satisfies (UC), (SA) then the
following conditions are equivalent:

(i) L is distributive,

(ii) every interval of finite length of L is distributive.
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