Characterization of Modularity by Means of Cover-Preserving Sublattices

> Marcin Łazarz University of Wrocław

92. Arbeitstagung Allgemeine Algebra Praha, May 27–29, 2016 Sublattices vs cover-preserving sublattices

Sublattices vs cover-preserving sublattices

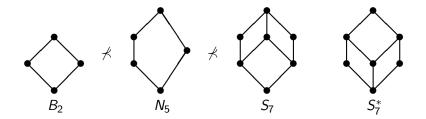
Definition. A sublattice K of a lattice L is said to be a **cover-preserving sublattice**, $K \prec L$, iff:

$$x \prec y$$
 in $K \Rightarrow x \prec y$ in L , for all $x, y \in L$.

Sublattices vs cover-preserving sublattices

Definition. A sublattice K of a lattice L is said to be a **cover-preserving sublattice**, $K \prec L$, iff:

$$x \prec y \text{ in } K \implies x \prec y \text{ in } L, \quad \text{for all } x, y \in L.$$



Birkhoff-style characterization: such and such sublattices are forbidden, e.g.:

Birkhoff-style characterization: such and such sublattices are forbidden, e.g.:

Theorem [Dedekind 1900, Birkhoff 1934]. A lattice is distributive iff there are no sublattices isomorphic to N_5 (pentagon) nor M_3 (diamond).

Birkhoff-style characterization: such and such sublattices are forbidden, e.g.:

Theorem [Dedekind 1900, Birkhoff 1934]. A lattice is distributive iff there are no sublattices isomorphic to N_5 (pentagon) nor M_3 (diamond).

Ward-style characterization: such and such cover-preserving sublattices are forbidden, eg.:

Birkhoff-style characterization: such and such sublattices are forbidden, e.g.:

Theorem [Dedekind 1900, Birkhoff 1934]. A lattice is distributive iff there are no sublattices isomorphic to N_5 (pentagon) nor M_3 (diamond).

Ward-style characterization: such and such cover-preserving sublattices are forbidden, eg.:

Theorem [Ward 1939]. Let *L* be a finite modular lattice. *L* is distributive iff there is no cover-preserving sublattice isomorphic to M_3 .

A lattice *L* is **upper continuous** iff *L* is complete and for every element $x \in L$ and every chain $C \subseteq L$:

$$x \land \bigvee C = \bigvee \{x \land c : c \in C\}$$
(UC)

A lattice *L* is **upper continuous** iff *L* is complete and for every element $x \in L$ and every chain $C \subseteq L$:

$$x \land \bigvee C = \bigvee \{x \land c : c \in C\}$$
(UC)

A lattice *L* is **strongly atomic** iff

$$(\forall x, y \in L)(x < y \Rightarrow (\exists z \in L)(x \prec z \le y))$$
 (SA)

A lattice *L* is **upper continuous** iff *L* is complete and for every element $x \in L$ and every chain $C \subseteq L$:

$$x \land \bigvee C = \bigvee \{x \land c : c \in C\}$$
(UC)

A lattice *L* is **strongly atomic** iff

$$(\forall x, y \in L)(x < y \Rightarrow (\exists z \in L)(x \prec z \le y))$$
 (SA)

Fact.

- Ascending chain condition \Rightarrow (UC)
- Descending chain condition \Rightarrow (SA)

Modularity in upper continuous and strongly atomic lattices

Modularity in upper continuous and strongly atomic lattices

Theorem [Birkhoff 1933, Crawley–Dilworth 1973].

If lattice L satisfies (UC) and (SA) then the following conditions are equivalent:

- 1. L is modular,
- 2. L satisfies (Sm) and (Sm*),

where:

$$(\forall x, y \in L)(x \land y \prec x \Rightarrow y \prec x \lor y)$$
 (Sm)

$$(\forall x, y \in L)(y \prec x \lor y \Rightarrow x \land y \prec x)$$
 (Sm^{*})

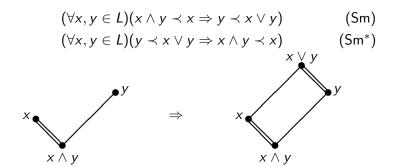
Modularity in upper continuous and strongly atomic lattices

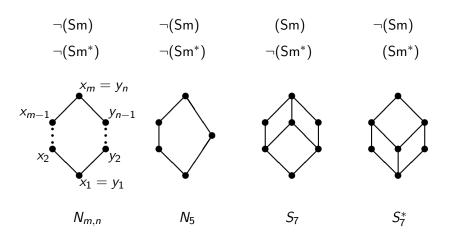
Theorem [Birkhoff 1933, Crawley–Dilworth 1973].

If lattice L satisfies (UC) and (SA) then the following conditions are equivalent:

- 1. L is modular,
- 2. L satisfies (Sm) and (Sm*),

where:





$$B_2 := N_{3,3} \quad N_5 := N_{4,3}$$

J. Jakubík and F. Šik's Characterizations of Modularity

Theorem [Jakubík 1975]. Let L be a lattice of **locally finite length**.¹ Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7, S_7^*, N_{m,n} \not\prec L$ (for $m \ge 4, n \ge 3$).

¹Every bounded chain is finite.

J. Jakubík and F. Šik's Characterizations of Modularity

Theorem [Jakubík 1975]. Let L be a lattice of **locally finite length**.¹ Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7, S_7^*, N_{m,n} \not\prec L$ (for $m \ge 4, n \ge 3$).

Theorem [Šik 197?]. Let L be a lattice of **locally finite length** satisfying (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

¹Every bounded chain is finite.

Let L be a lattice satisfying **(UC)** and **(SA)**. Then the following conditions are equivalent:

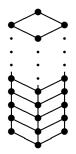
1. L is modular,

2.
$$S_7, S_7^*, N_{m,n} \not\prec L$$
 (for $m \ge 4, n \ge 3$).

Let L be a lattice satisfying **(UC)** and **(SA)**. Then the following conditions are equivalent:

1. L is modular,

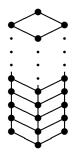
2.
$$S_7, S_7^*, N_{m,n} \not\prec L$$
 (for $m \ge 4, n \ge 3$).



Let L be a lattice satisfying **(UC)** and **(SA)**. Then the following conditions are equivalent:

1. L is modular,

2.
$$S_7, S_7^*, N_{m,n} \not\prec L$$
 (for $m \ge 4, n \ge 3$).

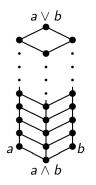


► (UC) and (SA)

Let L be a lattice satisfying **(UC)** and **(SA)**. Then the following conditions are equivalent:

1. L is modular,

2.
$$S_7, S_7^*, N_{m,n} \not\prec L$$
 (for $m \ge 4, n \ge 3$).

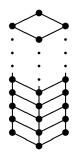


- \blacktriangleright (UC) and (SA)
- non-modular ((Sm) is violated)

Let L be a lattice satisfying **(UC)** and **(SA)**. Then the following conditions are equivalent:

1. L is modular,

2.
$$S_7, S_7^*, N_{m,n} \not\prec L$$
 (for $m \ge 4, n \ge 3$).



- \blacktriangleright (UC) and (SA)
- non-modular ((Sm) is violated)
- ► $S_7, S_7^*, N_{m,n} \not\prec L$ (for $m \ge 4, n \ge 3$).

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume L satisfies (UC), (SA), (Sm)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume L satisfies (UC), (SA), (Sm) Suppose that L is not modular

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume *L* satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.

Assume L satisfies (UC), (SA), (Sm)

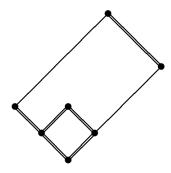
Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.



Assume L satisfies (UC), (SA), (Sm)

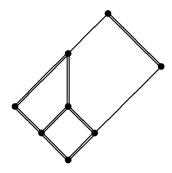
Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.



Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

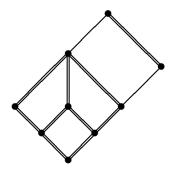
By Zorn Lemma there is the "smallest" pentagon (see figure)

The extension of Šik's Theorem

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.



Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

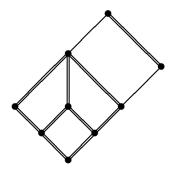
Construction of S_7 ...

The extension of Šik's Theorem

Theorem. Let L be a lattice satisfying **(UC)**, **(SA)**, and (Sm). Then the following conditions are equivalent:

- 1. L is modular,
- 2. $S_7 \not\prec L$.

The idea of the proof of $(2) \Rightarrow (1)$.



Assume L satisfies (UC), (SA), (Sm)

Suppose that L is not modular

By Zorn Lemma there is the "smallest" pentagon (see figure)

Construction of S_7 ...

The extension of Jakubík's Theorem is not true: (UC), (SA) \Rightarrow (*L* is modular \Leftrightarrow $S_7, S_7^*, N_{m,n} \not\prec L$)

The extension of Jakubík's Theorem is not true: (UC), (SA) \Rightarrow (*L* is modular \Leftrightarrow $S_7, S_7^*, N_{m,n} \not\prec L$) The extension of Šik's Theorem.

(UC), (SA), (Sm) \Rightarrow (*L* is modular \Leftrightarrow *S*₇ $\not\prec$ *L*)

The extension of Jakubík's Theorem is not true: (UC), (SA) $\Rightarrow (L \text{ is modular } \Leftrightarrow S_7, S_7^*, N_{m,n} \not\prec L)$

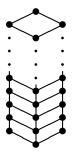
The extension of Šik's Theorem. (UC), (SA), (Sm) \Rightarrow (*L* is modular \Leftrightarrow $S_7 \not\prec L$)

The "dual" theorem is not true: (UC), (SA), (Sm*) \Rightarrow (*L* is modular \Leftrightarrow $S_7^* \not\prec L$)

The extension of Jakubík's Theorem is not true: (UC), (SA) \Rightarrow (*L* is modular \Leftrightarrow $S_7, S_7^*, N_{m,n} \not\prec L$)

The extension of Šik's Theorem. (UC), (SA), (Sm) \Rightarrow (*L* is modular \Leftrightarrow $S_7 \not\prec L$)

The "dual" theorem is not true: (UC), (SA), (Sm*) \Rightarrow (*L* is modular \Leftrightarrow $S_7^* \not\prec L$)



Applications: "finitary" description of modularity...

Applications: "finitary" description of modularity...

Corollary. If L satisfies (UC), (SA), and **(Sm)** then the following conditions are equivalent:

- (i) L is modular,
- (*ii*) every interval of finite length of *L* is modular.

...and distribitivity

Theorem [Łazarz, Siemieńczuk 2015]. (UC), (SA), modularity \Rightarrow (*L* is distributive \Leftrightarrow $M_3 \not\prec L$)

Theorem [Łazarz, Siemieńczuk 2015]. (UC), (SA), modularity \Rightarrow (*L* is distributive \Leftrightarrow $M_3 \not\prec L$)

Corollary. If a **modular** lattice *L* satisfies (UC), (SA) then the following conditions are equivalent:

- (i) L is distributive,
- (*ii*) every interval of finite length of *L* is distributive.

- CRAWLEY, P.—DILWORTH, R. P.: Algebraic Theory of Lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1973.
- JAKUBÍK, J.: *Modular Lattice of Locally Finite Length*, Acta Sci. Math. **37** (1975), 79–82.
- LAZARZ, M.—SIEMIEŃCZUK K.: Distributivity for Upper Continuous and Strongly Atomic Lattices, 2015, to appear.
- SIK, F.: A Note on the Modular Lattices of Locally Finite Length, (unpublished manuscript cited in [2]).
- STERN, M.: Semimodular Lattices. Theory and Applications, Cambridge University Press 1999.