Relatively pseudocomplemented posets

Ivan Chajda – Helmut Länger

Palacký University Olomouc, Olomouc, Czech Republic, email: ivan.chajda@upol.cz TU Wien, Vienna, Austria, email: helmut.laenger@tuwien.ac.at

Support of the research by the Austrian Science Fund (FWF), project I 1923-N25, and the Czech Science Foundation (GAČR), project 15-34697L, as well as by the project "Ordered structures for algebraic logic", supported by AKTION Austria – Czech Republic, project 75p11, is gratefully acknowledged.

92th Workshop on General Algebra, Prague, May 27, 2016

Contents:

- 1. Relative pseudocomplements
- 2. Properties of relatively pseudocomplemented posets
- 3. ∨-semilattices
- 4. Distributive posets
- 5. Reference

1. Relative pseudocomplements

э

ヨト イヨト

< 67 ▶

Relative pseudocomplements

Remark 1

$$(B, \lor, \land, ', 0, 1)$$
 Boolean algebra and $a, b \in B \Rightarrow$
 $\Rightarrow a' \lor b = \max\{x \in B \mid a \land x \le b\}$

Definition 2

•
$$(S, \wedge)$$
: \wedge -semilattice

 relative pseudocomplement a * b of a with respect to b := := max{x ∈ S | a ∧ x ≤ b}

Definition 3

•
$$(P, \leq)$$
: poset

•
$$L(a, b) := \{x \in P \mid x \le a, b\}, \ L(a) := L(a, a)$$

Relatively pseudocomplemented posets

Remark 4

 $(S, \wedge) \wedge$ -semilattice and $a, x, b \in S \Rightarrow (a \wedge x \leq b \Leftrightarrow L(a, x) \subseteq L(b))$

Definition 5

- (P, \leq): poset
- a, b ∈ P
- relative pseudocomplement a * b of a with respect to b :=
 := max{x ∈ P | L(a, x) ⊆ L(b)}
- (P, \leq) relatively pseudocomplemented : $\Leftrightarrow \forall x, y \in P \exists x * y$
- $\mathcal{P} := \{ relatively \ pseudocomplemented \ posets \}$

Remark 6

• We write members of \mathcal{P} in the form (P, \leq) or $(P, \leq, *)$.

•
$$(\mathsf{P},\leq)\in\mathcal{P}
eq(\mathsf{P},\leq)$$
 semilattice

Example of a member of \mathcal{P} which is not a semilattice

Example 7

is the Hasse diagram of a member of \mathcal{P} which is not a semilattice.

Example of a poset not belonging to ${\mathcal P}$

Example 8

is the Hasse diagram of a poset not belonging to ${\mathcal{P}}$ since

 $\exists c * d = \max\{x \mid L(c, x) \subseteq L(d)\} = \max\{a, b, d, e, f\}.$

2. Properties of relatively pseudocomplemented posets

ヨト イヨト

Properties of members of \mathcal{P}

Lemma 9

$$(P, \leq) \in \mathcal{P} \text{ and } a, b, c \in P \Rightarrow$$

• $(P, \leq) \text{ has a greatest element } 1,$
• $a \leq b \Leftrightarrow a * b = 1,$
• $a \leq b \Rightarrow (c * a \leq c * b \text{ and } b * c \leq a * c),$
• $a \leq b * a,$
• $a \leq (a * b) * b,$
• $a \leq (a * b) * b,$
• $a \leq b * c \Leftrightarrow b \leq a * c,$
• $(a * b) * a \leq (a * b) * b,$
• $L(a, b) = L(a, a * b),$
• $x * x \approx x * 1 \approx 1,$
• $1 * x \approx x,$
• $((x * y) * x) * y \approx ((x * y) * y) * y \approx x * y.$

Characterizing \mathcal{P}

Theorem 10

$$(P, \leq)$$
 poset and $*: P^2 \rightarrow P \Leftrightarrow ((i) \Leftrightarrow (ii) \Leftrightarrow (iii))$:

(i)
$$(P, \leq, *) \in \mathcal{P}$$
,

(ii)
$$(x \leq y * z \Leftrightarrow L(y, x) \subseteq L(z)) \forall x, y, z \in P$$
,

(iii)
$$((L(y,x) \subseteq L(z) \Rightarrow x \leq y * z) \text{ and } L(x,y) = L(x,x*y)) \forall x,y,z \in P.$$

표 문 문

• • • • • • • • • • • •

3. V-semilattices

2

When is a member of \mathcal{P} a \lor -semilattice?

Theorem 11

$(P,\leq,*)\in\mathcal{P}$

- $(x * y) * y \approx (y * x) * x \Rightarrow (P, \leq) \lor$ -semilattice and $x \lor y \approx (x * y) * y$
- $(P, \leq) \lor$ -semilattice $\neq (x * y) * y \approx (y * x) * x$

Example 12 is the Hasse diagram of a member of \mathcal{P} satisfying $(x * y) * y \approx (y * x) * x$.

A \lor -semilattice belonging to \mathcal{P} not satisfying $(x * y) * y \approx (y * x) * x$

Example 13

is the Hasse diagram of a \lor -semilattice belonging to \mathcal{P} , but

$$(0*a)*a = 1*a = a \neq 1 = 0*0 = (a*0)*0.$$

< 🗗

4. Distributive posets

æ

(日) (同) (三) (三)

Distributive posets

Definition 14

- (P, \leq) : poset
- *M*, *N* ⊆ *P*
- $L(M, N) := \{x \in P \mid x \le y \forall y \in M \cup N\}$
- $U(M, N) := \{x \in P \mid x \ge y \forall y \in M \cup N\}$

•
$$(P, \leq)$$
 distributive :
 $\Rightarrow U(L(x, y), L(x, z)) = U(L(x, U(y, z))) \forall x, y, z \in P$

Lemma 15

- (L, \lor, \land) lattice \Rightarrow $((L, \lor, \land)$ distributive \Leftrightarrow (L, \le) distributive)
- (P, \leq) poset \Rightarrow $((i) \Leftrightarrow (ii))$:
 - (i) (P, \leq) distributive
 - (ii) $U(L(x,y),L(x,z)) \subseteq U(L(x,U(y,z))) \forall x,y,z \in P$

3

Distributive vs. relatively pseudocomplemented

Theorem 16

- $(P; \leq) \in \mathcal{P} \Rightarrow (P, \leq)$ distributive
- (L, \lor, \land) finite distributive lattice $\Rightarrow (L, \leq) \in \mathcal{P}$
- (P, \leq) distributive \neq (P, \leq) $\in \mathcal{P}$

Example 17

is the Hasse diagram of a distributive poset not belonging to \mathcal{P} since it has no greatest element.

3

When do distributive posets belong to \mathcal{P} ?

Theorem 18

(P, \leq) distributive and ACC \Rightarrow $((i) \Leftrightarrow (ii))$:

(i) $(P, \leq) \in \mathcal{P}$

(ii) $\forall a, b \in P \exists$ the supremum of any two maximal elements of $\{x \in P \mid L(a, x) \subseteq L(b)\}$

5. Reference

2

Reference

I. Chajda and H. Länger, Relatively pseudocomplemented posets. Math. Bohemica (submitted).

< 🗇 🕨

ヨト イヨト

э

Thank you for your attention!

Chajda, Länger