Generalized Attributes in Concept Lattices

Léonard Kwuida

Bern University of Applied Sciences, Switzerland

Mai 27, 2016

joint work with R. Kuitché and E. R. Temgoua UYI and ENS, Yaoundé - Cameroon

4 0 8

Elementary Information system: Contexts

- A context is a triple $\mathbb{K} := (G, M, I)$ with sets G (of objects), M (of attributes) and $I \subseteq G \times M$ a binary relation.
- A concept is a pair (A, B) with B the set of all properties common to objects in A and A the set of all objects having all the properties in B.

K ロ ▶ K 御 ▶ K 手

Elementary Information system: Contexts

• A context is a triple $\mathbb{K} := (G, M, I)$ with sets G (of objects), M (of attributes) and $I \subseteq G \times M$ a binary relation.

• A concept is a pair (A, B) with B the set of all properties common to objects in A and A the set of all objects having all the properties in B.

K ロ ▶ | K 伺 ▶ | K 급

Elementary Information system: Contexts

- A context is a triple $\mathbb{K} := (G, M, I)$ with sets G (of objects), M (of attributes) and $I \subseteq G \times M$ a binary relation.
- A concept is a pair (A, B) with B the set of all properties common to objects in A and A the set of all objects having all the properties in B.

4 ロ > 4 母

 Ω

Lattice of concepts

• Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.

 $g \in g \colon f \longrightarrow (g, m) \in I.$ g has attribute m.

 $A' := \{ m \in M \mid \forall g \in A g I m \} \text{ and } B' := \{ g \in G \mid \forall m \in B g I m \}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- \bullet A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 200

K ロ ト K 何 ト K ヨ ト K ヨ

- Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.
- $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$. \bullet A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

• Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$. \bullet A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 200

• Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 Ω

• Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 Ω

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

• Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$. $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- \bullet $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 QQ

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

• Context: $\mathbb{K} := (G, M, I)$ with $I \subset G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 QQ

 4 ロ } 4 4 \oplus } 4 \oplus } 4 \oplus }

• Context: $\mathbb{K} := (G, M, I)$ with $I \subset G \times M$.

 $g \in g \colon m \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \le (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K});$ \leq) is a complete lattice, called concept lattice of K.

 QQ

 4 ロ } 4 4 \oplus } 4 \oplus } 4 \oplus }

- Context: $\mathbb{K} := (G, M, I)$ with $I \subset G \times M$.
- $g \in g \mid m : \iff (g, m) \in I.$ g has attribute m.

 $\mathcal{A}':=\{m\in \mathcal{M}\mid \ \forall g\in A\, g\, \mathrm{I}\, m\}$ and $\mathcal{B}':=\{g\in \mathcal{G}\mid \ \forall m\in B\, g\, \mathrm{I}\, m\}.$

- A formal concept of K is a pair (A, B) with $A' = B$ and $B' = A$.
- \bullet A is the extent and B the intent of the concept (A, B) .
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $\text{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^d c(\mathcal{P}(M)) =: \text{Int}(\mathbb{K}).$
- $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \le (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- \bullet ($\mathfrak{B}(\mathbb{K}); \leq$) is a complete lattice, called concept lattice of $\mathbb{K}.$

 QQ

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
-
-
- -
	-
	-

K ロ ▶ | K 伺 ▶ | K ヨ ▶

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped
-
- -
	-
	-

K ロ ト K 何 ト K ヨ ト K

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
-
- -
	-
	-

 Ω

K ロ ト K 何 ト K ヨ ト K

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- There are mainly three ways to express the relation J:
	-
	-
	-

 200

 4 ロ } 4 \overline{B} } 4 \overline{B} } 4 \overline{B} }

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- There are mainly three ways to express the relation J:
	-
	-
	-

 200

 4 ロ } 4 \overline{B} } 4 \overline{B} } 4 \overline{B} }

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- \bullet There are mainly three ways to express the relation J:

 \bigcirc gJs : iff g has at least one attribute from the group s

2 gJs :iff g has all attributes from the group s

3 gJs : iff g satisfies at least a certain proportion of the attributes in s

 QQ

キロメ メ都 メメ きょうくぼう

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- \bullet There are mainly three ways to express the relation J: \bigcirc gJs : iff g has at least one attribute from the group s 2 g/s :iff g has all attributes from the group s 3 gJs : iff g satisfies at least a certain proportion of the attributes in s

 QQ

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- \bullet There are mainly three ways to express the relation J:
	- \bigcirc gJs : iff g has at least one attribute from the group s
	- 2 gJs :iff g has all attributes from the group s
	- 3 gJs : iff g satisfies at least a certain proportion of the attributes in s

 QQ

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- \bullet There are mainly three ways to express the relation J:
	- \bigcirc gJs : iff g has at least one attribute from the group s
	- 2 gJs :iff g has all attributes from the group s
	- **3** gJs :iff g satisfies at least a certain proportion of the attributes in s

 QQ

Lattice of concepts

Generalizing attributes

The generalized attributes are

\n- (
$$
\exists
$$
) $A := \{e, g\}, B := \{b, c\}, C := \{a, d\}, D := \{f, h\}.$
\n- (\forall) $S := \{e, g\}, T := \{b, c\}, U := \{a, d\}, V := \{f, h\}.$
\n- (α) $E := \{a, b, c\}, F := \{d, e, f\}, H := \{g, h\}$ with threshold $\alpha = 60\%$
\n

 299

K ロ ⊁ K 倒 ≯ K

Þ \sim \sim 舌

Generalizing attributes

The generalized attributes are

\n- (
$$
\exists
$$
) $A := \{e, g\}, B := \{b, c\}, C := \{a, d\}, D := \{f, h\}.$
\n- (\forall) $S := \{e, g\}, T := \{b, c\}, U := \{a, d\}, V := \{f, h\}.$
\n- (α) $E := \{a, b, c\}, F := \{d, e, f\}, H := \{g, h\}$ with threshold $\alpha = 60\%$
\n

Expected Gain

Generalizing attributes reduced the size of the context. So we expect also the size of the concept lattice to reduce. BUT this is not always the case.

4 D F

Lattice of concepts

Lattice of concepts with generalized attributes

The size decreases in both three cases.

4 D F

 Ω

Generalizing attributes: the size can increase!

Generalizing attributes: the size can increase!

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- \bullet The lattice B_4 is the smallest lattice on which there is an ∃-generalization that increases the size of the initial concept lattice.

- Can the size increase by more than one after a ∃-generalisation?
- Can the size remains unchanged after a ∃-generalisation?
- Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- For any set S, the context (S,S,\neq) has $2^{|S|}$ concepts, that form a Boolean algebra.
- Set $S_n = \{1, ..., n\}$. Let $g_1, m_1, m_2 \notin S_n$.
- Set $\mathbb{K}_n^k := (S_n \cup \{g_1\}, S_n \cup \{m_1, m_2\}, I)$ with $k \in S_n$ and

$$
\begin{array}{ll}\n\blacktriangleright & \text{I} \cap (S_n \times S_n) = \ne \\
\blacktriangleright & g_1' = S_n, \quad m_1' = \{1, \ldots, k\} \text{ and } m_2' = S_n \setminus m_1'.\n\end{array}
$$

- The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
- ► Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.
- The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \left\{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil \right\}$ if n is odd.

 Ω

- For any set S, the context (S,S,\neq) has $2^{|S|}$ concepts, that form a Boolean algebra.
- Set $S_n = \{1, ..., n\}$. Let $g_1, m_1, m_2 \notin S_n$.
- Set $\mathbb{K}_n^k := (S_n \cup \{g_1\}, S_n \cup \{m_1, m_2\}, I)$ with $k \in S_n$ and

$$
\begin{array}{ll}\n\blacktriangleright & \text{I} \cap (S_n \times S_n) = \ne \\
\blacktriangleright & g_1' = S_n, \quad m_1' = \{1, \ldots, k\} \text{ and } m_2' = S_n \setminus m_1'.\n\end{array}
$$

If The context resulting from a ∃-generalization of m_1 **and** m_2 **is isomorphic to** (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.

■ The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} - 1$ concepts.

- ► Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.
- The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \left\{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil \right\}$ if n is odd.

- For any set S, the context (S,S,\neq) has $2^{|S|}$ concepts, that form a Boolean algebra.
- Set $S_n = \{1, ..., n\}$. Let $g_1, m_1, m_2 \notin S_n$.
- Set $\mathbb{K}_n^k := (S_n \cup \{g_1\}, S_n \cup \{m_1, m_2\}, I)$ with $k \in S_n$ and

$$
\begin{array}{ll}\n\blacktriangleright & \text{I} \cap (S_n \times S_n) = \ne \\
\blacktriangleright & g_1' = S_n, \quad m_1' = \{1, \ldots, k\} \text{ and } m_2' = S_n \setminus m_1'.\n\end{array}
$$

- **If The context resulting from a ∃-generalization of** m_1 **and** m_2 **is isomorphic to** (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- ► The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.

► Putting m_1 and m_2 together increases the size by $2^n - 2^k - 2^{n-k} + 1$.

■ The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \left\{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil \right\}$ if n is odd.

- For any set S, the context (S,S,\neq) has $2^{|S|}$ concepts, that form a Boolean algebra.
- Set $S_n = \{1, ..., n\}$. Let $g_1, m_1, m_2 \notin S_n$.
- Set $\mathbb{K}_n^k := (S_n \cup \{g_1\}, S_n \cup \{m_1, m_2\}, I)$ with $k \in S_n$ and

$$
\begin{array}{ll}\n\blacktriangleright & \text{I} \cap (S_n \times S_n) = \ne \\
\blacktriangleright & g_1' = S_n, \quad m_1' = \{1, \ldots, k\} \text{ and } m_2' = S_n \setminus m_1'.\n\end{array}
$$

- **If The context resulting from a ∃-generalization of** m_1 **and** m_2 **is isomorphic to** (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- ► The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
- ► Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.

■ The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \left\{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil \right\}$ if n is odd.

- For any set S, the context (S,S,\neq) has $2^{|S|}$ concepts, that form a Boolean algebra.
- Set $S_n = \{1, \ldots, n\}$. Let $g_1, m_1, m_2 \notin S_n$.
- Set $\mathbb{K}_n^k := (S_n \cup \{g_1\}, S_n \cup \{m_1, m_2\}, I)$ with $k \in S_n$ and

$$
\begin{array}{ll}\n\blacktriangleright & \text{I} \cap (S_n \times S_n) = \ne \\
\blacktriangleright & g_1' = S_n, \quad m_1' = \{1, \ldots, k\} \text{ and } m_2' = S_n \setminus m_1'.\n\end{array}
$$

- **If The context resulting from a ∃-generalization of** m_1 **and** m_2 **is isomorphic to** (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- ► The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
- ► Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.
- ► The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \left\{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil \right\}$ if n is odd.

$$
g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1
$$

\n
$$
0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.
$$

\n
$$
g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.
$$

For any context (G, M, I) , the number of concept is $\leq 2^{\min(|M|, |G|)}.$

• Let $(G, M \cup \{a, b\}, I)$ be a context and $(G, M \cup \{ab\}, I)$ the context obtained by ∃-generalizing a and b.

 $|\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{a, b\}, I)|$ $|\mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I})| \leq |\mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ab\},\mathsf{I})|$

> $\int d\mathbf{r} \, d\mathbf{r}$ $n_{\mathsf{a}} := |\mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a} \},\mathsf{I})| - |\mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I})|$

Set J $\overline{\mathcal{L}}$ $n_{a+b} := \vert \mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a},\mathsf{b} \},\mathsf{I}) \vert - \vert \mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I}) \vert$ $n_{ab} := \left| \mathfrak{B}(\mathit{G},\mathit{M} \cup \{ab\},\mathit{I}) \right| - \left| \mathfrak{B}(\mathit{G},\mathit{M},\mathit{I}) \right|$

 Ω

$$
g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1
$$

\n
$$
0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.
$$

\n
$$
g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.
$$

- For any context (G, M, I) , the number of concept is $\leq 2^{\min(|M|, |G|)}.$
- Let $(G, M \cup \{a, b\}, I)$ be a context and $(G, M \cup \{ab\}, I)$ the context obtained by \exists -generalizing a and b.

 $|\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{a, b\}, I)|$ $|\mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I})| \leq |\mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ab\},\mathsf{I})|$ Set $\int d\mathbf{r} \, d\mathbf{r}$ J $\overline{\mathcal{L}}$ $n_{\mathsf{a}} := |\mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a} \},\mathsf{I})| - |\mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I})|$ $n_{a+b} := \vert \mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a},\mathsf{b} \},\mathsf{I}) \vert - \vert \mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I}) \vert$ $n_{ab} := \left| \mathfrak{B}(\mathit{G},\mathit{M} \cup \{ab\},\mathit{I}) \right| - \left| \mathfrak{B}(\mathit{G},\mathit{M},\mathit{I}) \right|$

 Ω

$$
g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1
$$

\n
$$
0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.
$$

\n
$$
g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.
$$

For any context (G, M, I) , the number of concept is $\leq 2^{\min(|M|, |G|)}.$

• Let $(G, M \cup \{a, b\}, I)$ be a context and $(G, M \cup \{ab\}, I)$ the context obtained by \exists -generalizing a and b.

$$
\bigcirc \left\{ \left| \mathfrak{B}(G,M,I) \right| \leq \left| \mathfrak{B}(G,M \cup \{a,b\},I) \right| \\ \left| \mathfrak{B}(G,M,I) \right| \leq \left| \mathfrak{B}(G,M \cup \{ab\},I) \right| \right\}
$$

Set $\int d\mathbf{r} \, d\mathbf{r}$ J $\overline{\mathcal{L}}$ $n_{\mathsf{a}} := |\mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a} \},\mathsf{I})| - |\mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I})|$ $n_{a+b} := \vert \mathfrak{B}(\mathsf{G},\mathsf{M} \cup \{ \mathsf{a},\mathsf{b} \},\mathsf{I}) \vert - \vert \mathfrak{B}(\mathsf{G},\mathsf{M},\mathsf{I}) \vert$ $n_{ab} := \left| \mathfrak{B}(\mathit{G},\mathit{M} \cup \{ab\},\mathit{I}) \right| - \left| \mathfrak{B}(\mathit{G},\mathit{M},\mathit{I}) \right|$

∽≏

$$
g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1
$$

\n
$$
0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.
$$

\n
$$
g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.
$$

For any context (G, M, I) , the number of concept is $\leq 2^{\min(|M|, |G|)}.$

• Let $(G, M \cup \{a, b\}, I)$ be a context and $(G, M \cup \{ab\}, I)$ the context obtained by \exists -generalizing a and b.

$$
\begin{aligned}\n\bullet \begin{cases}\n|\mathfrak{B}(G,M,I)| \leq |\mathfrak{B}(G,M \cup \{a,b\},I)| \\
|\mathfrak{B}(G,M,I)| \leq |\mathfrak{B}(G,M \cup \{ab\},I)|\n\end{cases} \\
\bullet \text{Set} \begin{cases}\n n_a := |\mathfrak{B}(G,M \cup \{a\},I)| - |\mathfrak{B}(G,M,I)| \\
 n_{a+b} := |\mathfrak{B}(G,M \cup \{a,b\},I)| - |\mathfrak{B}(G,M,I)| \\
 n_{ab} := |\mathfrak{B}(G,M \cup \{ab\},I)| - |\mathfrak{B}(G,M,I)|\n\end{cases}\n\end{aligned}
$$

不自下

 Ω

• Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.

• The map

$$
\phi_a: \mathfrak{B}(G,M,I) \longrightarrow \mathfrak{B}(G,M \cup \{a\},I)
$$

\n
$$
(A,B) \longrightarrow \begin{cases}\n(A,B \cup \{a\}) & \text{if } A \subseteq a' \\
(A,B) & \text{else}\n\end{cases}
$$

is an injective map.

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y ⊆ M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent $B.$ The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.
- Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'.$

÷.

 QQ

- Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.
- The map

$$
\phi_a: \quad \mathfrak{B}(G,M,I) \quad \longrightarrow \quad \mathfrak{B}(G,M \cup \{a\},I)
$$
\n
$$
(A,B) \quad \longmapsto \quad \begin{cases}\n(A,B \cup \{a\}) & \text{if } A \subseteq a' \\
(A,B) & \text{else}\n\end{cases}
$$

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y ⊆ M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent $B.$ The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.
- Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'.$

÷.

 QQ

- Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.
- The map

$$
\phi_a: \quad \mathfrak{B}(\mathcal{G}, \mathcal{M}, I) \quad \longrightarrow \quad \mathfrak{B}(\mathcal{G}, \mathcal{M} \cup \{a\}, I) \\
 (A, B) \qquad \longmapsto \quad \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\
 (A, B) & \text{else} \end{cases}
$$

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y ⊆ M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent $B.$ The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.
- Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'.$

÷.

 QQ

- Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.
- The map

$$
\phi_a: \quad \mathfrak{B}(\mathcal{G}, \mathcal{M}, I) \quad \longrightarrow \quad \mathfrak{B}(\mathcal{G}, \mathcal{M} \cup \{a\}, I) \\
 (A, B) \qquad \longmapsto \quad \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\
 (A, B) & \text{else} \end{cases}
$$

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y \subseteq M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent $B.$ The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.
- Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'.$

÷.

 QQ

- Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.
- The map

$$
\phi_a: \quad \mathfrak{B}(\mathcal{G}, \mathcal{M}, I) \quad \longrightarrow \quad \mathfrak{B}(\mathcal{G}, \mathcal{M} \cup \{a\}, I) \\
 (A, B) \qquad \longmapsto \quad \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\
 (A, B) & \text{else} \end{cases}
$$

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y \subseteq M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent B . The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.

Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'.$

 Ω

- Let $(G, M \cup \{a, b\}, I)$ be a context. ∃-Generalizing a and b increases the concept lattice size iff $n_{ab} > n_{a+b}$.
- The map

$$
\phi_a: \quad \mathfrak{B}(\mathcal{G}, \mathcal{M}, I) \quad \longrightarrow \quad \mathfrak{B}(\mathcal{G}, \mathcal{M} \cup \{a\}, I) \\
 (A, B) \qquad \longmapsto \quad \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\
 (A, B) & \text{else} \end{cases}
$$

- If $a' = G$ then Φ_a is a bijection.
- If *a* is reducible (i.e. ∃ $Y \subseteq M$ such that $a' = Y'$) then Φ_a is a bijection.
- Let $A \nsubseteq a'$ be an extent of (G, M, I) , with intent B . The set $A \cap a'$ is also an extent of $(G, M \cup \{a\})$ with intent $B \cup \{a\}$.
- Thus (A, B) and $(A \cap a', B \cup \{a\})$ are both concepts of $(G, M \cup \{a\})$. i.e. (A, B) of (G, M, I) generates an additional concept if $A \nsubseteq a'$.

÷.

 Ω

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a' \cup b') \setminus \{a' \cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$
- Thus $n_{ab} n_{a+b} \leq 2^{|a'|+|b'|} 2^{|a'|} 2^{|b'|} + 1$

4 D F

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a' \cup b') \setminus \{a' \cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$
- Thus $n_{ab} n_{a+b} \leq 2^{|a'|+|b'|} 2^{|a'|} 2^{|b'|} + 1$

 200

K ロ ト K 何 ト K ヨ ト K

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a'\cup b')\setminus\{a'\cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$
- Thus $n_{ab} n_{a+b} \leq 2^{|a'|+|b'|} 2^{|a'|} 2^{|b'|} + 1$

 200

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a'\cup b')\setminus\{a'\cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$
- Thus $n_{ab} n_{a+b} \leq 2^{|a'|+|b'|} 2^{|a'|} 2^{|b'|} + 1$

 200

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a'\cup b')\setminus\{a'\cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$

Thus $n_{ab} - n_{a+b} \leq 2^{|a'|+|b'|} - 2^{|a'|} - 2^{|b'|} + 1$

The maximal increase after \exists -generalizing is reached when n_{ab} is maximal and n_{a+b} minimal and is $n_{ab} - n_{a+b} \leq 2^{|a'|+|b'|} - 2^{|a'|} - 2^{|b'|} + 1$

 Ω

- The maximum for n_a is 2 $^{|a'|}$ if all $A \cap a'$ are distinct extents of $(G, M, I).$
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I) .
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a'\cup b')\setminus\{a'\cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with $|M| - 1 = |ab'| = |a' \cup b'|$.
- The increase n_{a+b} after adding both a and b is minimal when $a' \cap b' = \emptyset$ holds. That is $n_{a+b} = n_a + n_b - 1$
- Thus $n_{ab} n_{a+b} \leq 2^{|a'|+|b'|} 2^{|a'|} 2^{|b'|} + 1$

 Ω