Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

Qualitative Calculi as a generalisation of Tarski's Relation Algebras

Tomasz Kowalski

Department of Mathematics and Statistics La Trobe University

28th May, 2016

<ロト < @ ト < E ト < E ト E の < @</p>

Relation	Algebras
00000	

Qualitative calculi 000000 Network Satisfaction Problems 000

Some complexity

Algebras of binary relations

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
•0000	000000	000	0000000

► A. De Morgan, On the syllogism IV: and on the logic of relations (1858)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
•0000	000000	000	0000000
			/

► A. De Morgan, On the syllogism IV: and on the logic of relations (1858)

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト ● ● ●

► Ch.S. Peirce, *Note B: the logic of relatives* (1883)

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
•0000	000000	000	0000000
			/

- ► A. De Morgan, On the syllogism IV: and on the logic of relations (1858)
- ► Ch.S. Peirce, Note B: the logic of relatives (1883)
- ► E. Schröder, Vorlesungen über die Algebra der Logik (1895)

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
•0000	000000	000	0000000

- ► A. De Morgan, On the syllogism IV: and on the logic of relations (1858)
- ► Ch.S. Peirce, Note B: the logic of relatives (1883)
- ► E. Schröder, Vorlesungen über die Algebra der Logik (1895)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

► A. Tarski, On the calculus of relations (1941)

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
•0000 ⁻	000000	000	0000000

- ► A. De Morgan, On the syllogism IV: and on the logic of relations (1858)
- ► Ch.S. Peirce, Note B: the logic of relatives (1883)
- E. Schröder, Vorlesungen über die Algebra der Logik (1895)
- ► A. Tarski, On the calculus of relations (1941)

Let U be any set. Consider $\mathcal{P}(U \times U)$ with the following operations:

- ▶ union (\cup), intersection (\cap) and complement ($^-$)
- ► relational composition (°) and converse (⁻¹)
- identity relation (*Id*), bottom (\emptyset), top ($U \times U$)

The structure $\mathfrak{Re}(U) = \langle \mathfrak{P}(U \times U); \cup, \cap, \circ, -, -^1, Id, \emptyset, U \times U \rangle$ is an algebra of binary relations.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト ● ● ●

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.
- 3. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \circ, -, -^1, Id, \emptyset, U \times U \rangle$ into a Boolean Algebra with Operators, namely

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.
- Equations making ⟨𝒫(U × U); ∪, ∩, ∘, ⁻, ⁻¹, Id, Ø, U × U⟩ into a Boolean Algebra with Operators, namely
 - ► $x \circ (y \cup z) = (x \circ y) \cup (x \circ z), (x \cup y) \circ z = (x \circ z) \cup (y \circ z)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

 $\blacktriangleright \ x \circ \emptyset = \emptyset = \emptyset \circ x$

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.
- 3. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \circ, -, -^1, Id, \emptyset, U \times U \rangle$ into a Boolean Algebra with Operators, namely
 - ► $x \circ (y \cup z) = (x \circ y) \cup (x \circ z), (x \cup y) \circ z = (x \circ z) \cup (y \circ z)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

 $\bullet \ x \circ \emptyset = \emptyset = \emptyset \circ x$

•
$$(x \cup y)^{-1} = x^{-1} \cup y^{-1}$$

► $\emptyset^{-1} = \emptyset$

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.
- Equations making ⟨𝒫(U × U); ∪, ∩, ∘, ⁻, ⁻¹, Id, Ø, U × U⟩ into a Boolean Algebra with Operators, namely
 - ► $x \circ (y \cup z) = (x \circ y) \cup (x \circ z), (x \cup y) \circ z = (x \circ z) \cup (y \circ z)$
 - $\bullet \ x \circ \emptyset = \emptyset = \emptyset \circ x$
 - $(x \cup y)^{-1} = x^{-1} \cup y^{-1}$
 - ► $\emptyset^{-1} = \emptyset$

4. Triangle laws:

$$x \circ y \cap z = \emptyset$$
 iff $x^{-1} \circ z \cap y = \emptyset$ iff $z \circ y^{-1} \cap x = \emptyset$.

・ロト・西ト・ヨト・ヨト・日下

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

- 1. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \overline{-}, Id, \emptyset, U \times U \rangle$ into a Boolean algebra.
- 2. Equations making $\langle \mathcal{P}(U \times U); \circ, {}^{-1}, Id \rangle$ into an involutive monoid.
- 3. Equations making $\langle \mathcal{P}(U \times U); \cup, \cap, \circ, -, -^1, Id, \emptyset, U \times U \rangle$ into a Boolean Algebra with Operators, namely
 - ► $x \circ (y \cup z) = (x \circ y) \cup (x \circ z), (x \cup y) \circ z = (x \circ z) \cup (y \circ z)$
 - $\bullet \ x \circ \emptyset = \emptyset = \emptyset \circ x$
 - $(x \cup y)^{-1} = x^{-1} \cup y^{-1}$
 - $\emptyset^{-1} = \emptyset$

4. Triangle laws:

$$x \circ y \cap z = \emptyset$$
 iff $x^{-1} \circ z \cap y = \emptyset$ iff $z \circ y^{-1} \cap x = \emptyset$.

5. Or, equivalently, $(x^{-1} \circ (x \circ y)^{-}) \cup y^{-} = y^{-}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

Atom structures

An (abstract) relation algebra (RA) is any algebra $\mathbf{A} = \langle A; \lor, \land, ;, -, \check{}, 1', 0, 1 \rangle$ satisfying equations from the previous slide.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000
			1

Atom structures

An (abstract) relation algebra (RA) is any algebra $\mathbf{A} = \langle A; \lor, \land, ;, -, \check{}, 1', 0, 1 \rangle$ satisfying equations from the previous slide.

Definition

Let *X* be the set of atoms of an atomic RA algebra A. The atom structure At(A) is defined as $At(A) = (X, E, \check{}, C)$ where *E* is the set of atoms below the identity, $\check{}$ is the converse function restricted to atoms, and *C* is the set of consistent triples of atoms, i.e. those triples of atoms (a, b, c) such that $a ; b \ge c$.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

Atom structures

An (abstract) relation algebra (RA) is any algebra $\mathbf{A} = \langle A; \lor, \land, ;, -, \check{}, 1', 0, 1 \rangle$ satisfying equations from the previous slide.

Definition

Let *X* be the set of atoms of an atomic RA algebra A. The atom structure At(A) is defined as $At(A) = (X, E, \check{}, C)$ where *E* is the set of atoms below the identity, $\check{}$ is the converse function restricted to atoms, and *C* is the set of consistent triples of atoms, i.e. those triples of atoms (a, b, c) such that $a ; b \ge c$.

Atom structures can be given as multiplication tables, e.g.:

;	1'	b	а
1′	1′	b	а
b	b	1' ∨ <i>a</i>	$a \lor b$
а	a	$a \lor b$	$1' \lor b$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras	Qualitative calculi 000000	Network Satisfaction Problems 000	Some complexity
			1

00000	000000	000	0000000
Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity

Question (Jónsson and Tarski, 1948)

Is every abstract relation algebra representable as a concrete algebra of binary relations?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Question (Jónsson and Tarski, 1948)

Is every abstract relation algebra representable as a concrete algebra of binary relations?

Technically, an abstract RA \mathbb{A} is a representable relation algebra (RRA), if \mathbb{A} is isomorphic to a subalgebra of a direct product of algebras of binary relations.

Question (Jónsson and Tarski, 1948)

Is every abstract relation algebra representable as a concrete algebra of binary relations?

Technically, an abstract RA \mathbb{A} is a representable relation algebra (RRA), if \mathbb{A} is isomorphic to a subalgebra of a direct product of algebras of binary relations.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Theorem (Lyndon, 1950)

There are non-representable relation algebras.

Question (Jónsson and Tarski, 1948)

Is every abstract relation algebra representable as a concrete algebra of binary relations?

Technically, an abstract RA \mathbb{A} is a representable relation algebra (RRA), if \mathbb{A} is isomorphic to a subalgebra of a direct product of algebras of binary relations.

Theorem (Lyndon, 1950)

There are non-representable relation algebras.

Theorem (Hirsch and Hodkinson, 2001)

Representability for finite RAs is undecidable.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000
			1

Representability by games

Hirsch and Hodkinson showed that representability is equivalent to a winning strategy in a certain game (between \forall belard and \exists loïse, of course).

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

Representability by games

Hirsch and Hodkinson showed that representability is equivalent to a winning strategy in a certain game (between \forall belard and \exists loïse, of course).

Consider the 16-element Boolean algebra, with atoms 1', b, b', a. Define composition on atoms by

;	1'	b	bĭ	а
1′	1′	b	bĭ	а
b	b	b	1	$a \lor b$
bĭ	bĭ	1	bĭ	$a \lor b$ ັ
а	a	$a \lor b$	$a \lor b$	$1' \lor b \lor b$

Let K stand for the algebra defined by this table.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

Representability by games

Hirsch and Hodkinson showed that representability is equivalent to a winning strategy in a certain game (between \forall belard and \exists loïse, of course).

Consider the 16-element Boolean algebra, with atoms 1', b, b', a. Define composition on atoms by

Let K stand for the algebra defined by this table.

Theorem (McKenzie, 1974)

K is an abstract relation algebra, but it is not representable.

Sac

Relation Algebras	Qualitative calculi •00000	Network Satisfaction Problems	Some complexity

Allen's Interval Algebra

J.F. Allen, Maintaining knowledge about temporal intervals (1983)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

► 13 atomic relations between time intervals:

Relation Algebras 00000	Qualitative calculi •00000	Network Satisfaction Problems	Some complexity

Allen's Interval Algebra

J.F. Allen, Maintaining knowledge about temporal intervals (1983)

► 13 atomic relations between time intervals:

<u> </u>		
<u> </u>	X before Y	Y after X
X		
<u> </u>	X meets Y	Y is met by X
X		
Y	X overlaps with Y	Y is overlapped by X
X		
<u> </u>	X starts Y	Y is started by X
X		
<u> </u>	X during Y	Y contains X
X		
<u> </u>	X finishes Y	Y is finished by X
X		
<u> </u>	X equals Y	Y equals X

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Relation Algebras 00000	Qualitative calculi 00000	Network Satisfaction Problems	Some complexity
			1

Region Connection Calculus (RCC8) D.A. Randell, Z. Cui, A.G. Cohn, *A spatial logic based on regions*

and connection (1992)

► 8 atomic relations between regions of a plane

Relation Algebras 00000	Qualitative calculi 00000	Network Satisfaction Problems	Some complexity

Region Connection Calculus (RCC8) D.A. Randell, Z. Cui, A.G. Cohn, *A spatial logic based on regions and connection* (1992)

► 8 atomic relations between regions of a plane

X DC Y	X is disconnected from Y	Y DC X
X EC Y	X is externally connected to Y	Y EC X
X TPP Y	X is a tangential proper part of X	Y TPPi X
X NTPP Y	X is a non-tangential proper part of Y	Y NTPPi X
X PO Y	X properly overlaps Y	<i>Y</i> PO <i>X</i>
X EQ Y	X is equal to Y	Y EQ X

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	00000	000	0000000
			1

The usual relational composition does not work for RCC8.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity
			1

The usual relational composition does not work for RCC8.

▶ Problem. Naive calculation gives: EC; $EC = DC \cup EC \cup PO \cup TPP \cup TPPi \cup EQ$. In particular, EC; $EC \supset EC$.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity
			1

The usual relational composition does not work for RCC8.

▶ Problem. Naive calculation gives: EC; $EC = DC \cup EC \cup PO \cup TPP \cup TPPi \cup EQ$. In particular, EC; $EC \supset EC$. But (draw a picture)...

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Relation Algebras 00000	Qualitative calculi	Network Satisfaction Problems 000	Some complexity
			1

The usual relational composition does not work for RCC8.

▶ Problem. Naive calculation gives: EC; $EC = DC \cup EC \cup PO \cup TPP \cup TPPi \cup EQ$. In particular, EC; $EC \supset EC$. But (draw a picture)...

Definition

Let *U* be a set and let Π be a partition of $U \times U$. For partition classes *R* and *S* we define their weak composition, by

$$R; S = \bigcup \{A \in \Pi : (R \circ S) \cap A \neq \emptyset\}.$$

Extend this to arbitrary unions of partition classes, putting

$$\bigcup_{i\in I} R_i ; \bigcup_{j\in J} S_j = \bigcup_{(i,j)\in I\times J} R_i ; S_j.$$

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000

Algebras of relations with weak composition

Definition

Let *D* be a set and let *S* be a set of binary relations over *D*, that is, $S \subseteq \mathcal{P}(D \times D)$. We say that *S* is a flock if

- 1. S forms a boolean set algebra with top element $D \times D$,
- 2. $Id_D \in S$,
- 3. If $A \in S$ then the converse relation A^{-1} is in S,
- 4. For all $A, B \in S$ there is a smallest relation $C \in S$ containing $A \circ B$.

The last property follows automatically when S is finite, since it is closed under finite intersections. Indeed, in the finite case, the smallest C containing $A \circ B$ is precisely the weak composition of A and B.

Qualitative representation of a (non-associative) algebra

Definition

Let $\mathbb{A} = (A, \lor, \land, ;, -, \check{}, 1', 0, 1)$ be an algebra of the signature of relation algebras.

1.
$$0^{\phi} = \emptyset$$
, $1^{\phi} = D \times D$, $(1')^{\phi} = Id_D$,
2. $(a \lor b)^{\phi} = a^{\phi} \cup b^{\phi}$, $(-a)^{\phi} = (D \times D) \setminus a^{\phi}$,
3. $(a^{\circ})^{\phi} = (a^{\phi})^{\circ}$,
4. $c^{\phi} \supseteq a^{\phi}$; $b^{\phi} \iff c \ge a$; b

for all $a, b, c \in A$.

► If $(a; b)^{\phi} = a^{\phi}$; b^{ϕ} for all $a, b \in \mathbb{A}$ then ϕ is a strong square representation, or simply a square representation.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000
			· · · · · · · · · · · · · · · · · · ·

Representing the non-representable

Qualitative representability is also equivalent to a winning strategy in a game. But now \exists loïse can cheat a little...

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000	000	0000000
			-

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Representing the non-representable

Qualitative representability is also equivalent to a winning strategy in a game. But now \exists loïse can cheat a little...

Observation

McKenzie's algebra K is qualitatively representable.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	00000●	000	

Representing the non-representable

Qualitative representability is also equivalent to a winning strategy in a game. But now \exists loïse can cheat a little...

Observation

McKenzie's algebra K is qualitatively representable.

・ ロ ト ・ 四 ト ・ 日 ト

Sac

Some representations of K.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	00000●	000	

Representing the non-representable

Qualitative representability is also equivalent to a winning strategy in a game. But now \exists loïse can cheat a little...

Observation

McKenzie's algebra K is qualitatively representable.

Some representations of K.

Theorem

The problem of determining whether a finite atom structure has a qualitative representation is NP-complete.

Qualitative calculi 000000	Network Satisfaction Problems •00	Some complexity
	Qualitative calculi 000000	Qualitative calculi Network Satisfaction Problems 000000

Networks

Definition

Let A be a non-associative algebra.

- A network (N, λ) over A consists of a set N of nodes and a function $\lambda : (N \times N) \rightarrow A$.
- A network (N, λ) is consistent if
 - (a) $\lambda(x, x) \leq 1'$,
 - (b) $(\lambda(x, y); \lambda(y, z)) \land \lambda(x, z) \neq 0$, for all nodes $x, y, z \in N$,
 - (c) $\lambda(x, y) \wedge \lambda(y, x) \neq 0$,
 - (d) $\lambda(x, y) \neq 0$, for all nodes $x, y \in N$.
- An atomic network (N, λ) is a network where $\lambda(x, y)$ is always an atom of **A**.
- An atomic network is consistent if it is consistent as a network.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

► A network (N, λ) embeds into a strong representation ϕ if there is a map \prime from N to the base of ϕ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\phi}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

- ► A network (N, λ) embeds into a strong representation ϕ if there is a map \prime from N to the base of ϕ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\phi}$.
- ► Similarly, (N, λ) embeds into a qualitative representation θ if there is a map \prime from N to the base of a qualitative representation θ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\theta}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

- ► A network (N, λ) embeds into a strong representation ϕ if there is a map \prime from N to the base of ϕ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\phi}$.
- ► Similarly, (N, λ) embeds into a qualitative representation θ if there is a map \prime from N to the base of a qualitative representation θ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\theta}$.
- A network over A is satisfiable if it embeds into some strong representation of A and it is qualitatively satisfiable if it embeds into some qualitative representation of A. Clearly, if (N, λ) is strongly satisfiable then it is qualitatively satisfiable.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

- ► A network (N, λ) embeds into a strong representation ϕ if there is a map \prime from N to the base of ϕ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\phi}$.
- ► Similarly, (N, λ) embeds into a qualitative representation θ if there is a map \prime from N to the base of a qualitative representation θ such that for all $x, y \in N$ we have $(x', y') \in \lambda(x, y)^{\theta}$.
- A network over A is satisfiable if it embeds into some strong representation of A and it is qualitatively satisfiable if it embeds into some qualitative representation of A. Clearly, if (N, λ) is strongly satisfiable then it is qualitatively satisfiable.
- A representation φ of the finite relation algebra A is universal if every consistent atomic network embeds into φ.

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Some (very little) model theory

Theorem

The class of qualitatively representable algebras (QRA) is not strictly elementary. But V(QRA) is what you would expect:

- V(QRA) = SP(QRA).
- ► V(QRA) is a discriminator variety with simple members belonging to QRA.

Some (very little) model theory

Theorem

The class of qualitatively representable algebras (QRA) is not strictly elementary. But V(QRA) is what you would expect:

- V(QRA) = SP(QRA).
- ► V(QRA) is a discriminator variety with simple members belonging to QRA.

Theorem

Let A be a finite algebra of the type of relation algebras, and \mathcal{N}_A be the class of consistent atomic networks over A.

- 1. If \mathcal{N}_A has JEP, then A is a QRA.
- 2. If N_A has JEP and AP, then A is a RRA. Moreover, A has an ω -categorical, homogeneous representation.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity •000000

Monotone not-all-equal 3-sat

Given a finite set of clauses C_1, \ldots, C_n , such that:

- all literals are positive
- ► there are precisely three literals in each clause

is there an assignment v such that

- *v* satisfies $C_1 \wedge \cdots \wedge C_n$
- ► it is not the case that $v(\ell_1^i) = v(\ell_2^i) = v(\ell_3^i)$, for any clause $C_i = \ell_1^i \lor \ell_2^i \lor \ell_3^i$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000		•000000

Monotone not-all-equal 3-sat

Given a finite set of clauses C_1, \ldots, C_n , such that:

- all literals are positive
- ► there are precisely three literals in each clause

is there an assignment v such that

- *v* satisfies $C_1 \wedge \cdots \wedge C_n$
- ► it is not the case that $v(\ell_1^i) = v(\ell_2^i) = v(\ell_3^i)$, for any clause $C_i = \ell_1^i \lor \ell_2^i \lor \ell_3^i$.

(日) (日) (日) (日) (日) (日) (日) (日)

Lemma

Monotone NAE-3-SAT is NP-complete.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000		•000000

Monotone not-all-equal 3-sat

Given a finite set of clauses C_1, \ldots, C_n , such that:

- ► all literals are positive
- ► there are precisely three literals in each clause

is there an assignment v such that

- *v* satisfies $C_1 \wedge \cdots \wedge C_n$
- ► it is not the case that $v(\ell_1^i) = v(\ell_2^i) = v(\ell_3^i)$, for any clause $C_i = \ell_1^i \lor \ell_2^i \lor \ell_3^i$.

Lemma

Monotone NAE-3-SAT is NP-complete.

We will now interpret M-NAE-3-SAT in NSP over McKenzie algebra K. This will show that network satisfiability for K is NP-hard.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems 000	Some complexity 000000

Interpreting variables, literals and clauses

For an arbitrary instance *I* of M-NAE-3-SAT we construct a network (N_I, λ_I) corresponding to *I*. The vertices of N_I are:

• T_p and F_p , for each propositional variable p occurring in I,

► $U_1^i, U_2^i, U_3^i, L_1^i, L_2^i, L_3^i$, for literals $\ell_1^i, \ell_2^i, \ell_3^i$ in each clause C_i . The labelling function λ_I is required to satisfy conditions illustrated below:

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

• Suppose the network (N_I, λ_I) is satisfiable, that is, embeds as a subnetwork into some qualitative representation of K.

Relation Algebras	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

- Suppose the network (N_I, λ_I) is satisfiable, that is, embeds as a subnetwork into some qualitative representation of K.
- ► Assign 1 to every variable *p* such that *F_p* < *T_p* holds in the representation. Assign 0 to every variable *p* such that *T_p* < *F_p* holds in the representation.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

- Suppose the network (N_I, λ_I) is satisfiable, that is, embeds as a subnetwork into some qualitative representation of K.
- ► Assign 1 to every variable *p* such that *F_p* < *T_p* holds in the representation. Assign 0 to every variable *p* such that *T_p* < *F_p* holds in the representation.
- This is a satisfying assignment for the original instance / of M-NAE-3-SAT.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

- Suppose the network (N_I, λ_I) is satisfiable, that is, embeds as a subnetwork into some qualitative representation of K.
- ► Assign 1 to every variable *p* such that *F_p* < *T_p* holds in the representation. Assign 0 to every variable *p* such that *T_p* < *F_p* holds in the representation.
- This is a satisfying assignment for the original instance / of M-NAE-3-SAT.

Next, we have to go the other way: for a satisfiable instance I of M-NAE-3-SAT, we need to find a copy of (N_I, λ_I) as a subnetwork of some qualitative representation of **K**.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

Consider v(p) = v(q) = 1 and v(r) = v(s) = 0 on the instance

$$(p \lor q \lor r) \land (q \lor r \lor s) \land (r \lor s \lor p) \land (s \lor p \lor q)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where we have literals ℓ_1^1 , ℓ_3^3 , ℓ_2^4 instantiated by p, literals ℓ_2^1 , ℓ_1^2 , ℓ_3^4 instantiated by q, literals ℓ_3^1 , ℓ_2^2 , ℓ_1^3 instantiated by r, and literals ℓ_3^2 , ℓ_3^2 , ℓ_1^4 instantiated by s.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems 000	Some complexity

Consider v(p) = v(q) = 1 and v(r) = v(s) = 0 on the instance

$$(p \lor q \lor r) \land (q \lor r \lor s) \land (r \lor s \lor p) \land (s \lor p \lor q)$$

where we have literals ℓ_1^1 , ℓ_3^3 , ℓ_2^4 instantiated by p, literals ℓ_2^1 , ℓ_1^2 , ℓ_3^4 instantiated by q, literals ℓ_3^1 , ℓ_2^2 , ℓ_1^3 instantiated by r, and literals ℓ_3^2 , ℓ_2^3 , ℓ_1^4 instantiated by s.

Now, construct

◆ロ > ◆母 > ◆臣 > ◆臣 > → 臣 - ����

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems 000	Some complexity

Next, we amalgamate the four networks by

identifying vertices appropriately, and

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The other way, by example

Next, we amalgamate the four networks by

- identifying vertices appropriately, and
- ► adding the *T* and *F* vertices where they should be:

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

Next, we amalgamate the four networks by

- identifying vertices appropriately, and
- ▶ adding the *T* and *F* vertices where they should be:

$$U_{2}^{1} = U_{1}^{2} = U_{3}^{3} = U_{3}^{4}$$

$$F_{s} = F_{r}$$

$$U_{1}^{1} = U_{2}^{2} = U_{1}^{3} = U_{2}^{4}$$

$$F_{q} = F_{p}$$

$$U_{3}^{1} = U_{3}^{2} = U_{1}^{3} = U_{1}^{4}$$

$$L_{1}^{1} = L_{1}^{2} = L_{3}^{3} = L_{2}^{4}$$

・ロト・西ト・ヨト・ヨト・日下

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity

 Using the symmetries of the situation one can show that the configuration from the previous slide suffices in all cases.

Relation Algebras	Qualitative calculi	Network Satisfaction Problems	Some complexity
00000	000000		00000€0

► Using the symmetries of the situation one can show that the configuration from the previous slide suffices in all cases.

Theorem

NSP over McKenzie algebra K is NP-hard; hence NP-complete.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity 00000€0

 Using the symmetries of the situation one can show that the configuration from the previous slide suffices in all cases.

Theorem

NSP over McKenzie algebra K is NP-hard; hence NP-complete.

Final remark

This argument in fact shows NP-hardness of NSPs over certain fragments of any qualitative calculus \mathbf{Q} such that:

- Q contains a relation that behaves locally as an ordering relation, and
- ► Q contains a relation that behaves locally as an incomparability relation.

Relation Algebras 00000	Qualitative calculi 000000	Network Satisfaction Problems	Some complexity 00000€0

► Using the symmetries of the situation one can show that the configuration from the previous slide suffices in all cases.

Theorem

NSP over McKenzie algebra K is NP-hard; hence NP-complete.

Final remark

This argument in fact shows NP-hardness of NSPs over certain fragments of any qualitative calculus ${\bf Q}$ such that:

- Q contains a relation that behaves locally as an ordering relation, and
- ► Q contains a relation that behaves locally as an incomparability relation.

This subsumes most of the existing results.

Relation Algebras

Qualitative calculi 000000 Network Satisfaction Problems 000 Some complexity

Thank you!

