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Algebras of binary relations

I A. De Morgan, On the syllogism IV: and on the logic of
relations (1858)

I Ch.S. Peirce, Note B: the logic of relatives (1883)
I E. Schröder, Vorlesungen über die Algebra der Logik (1895)
I A. Tarski, On the calculus of relations (1941)

Let U be any set. Consider P(U × U) with the following
operations:

I union (∪), intersection (∩) and complement (−)
I relational composition (◦) and converse (−1)
I identity relation (Id), bottom (∅), top (U × U)

The structure Re(U) = 〈P(U × U);∪,∩, ◦,−,−1, Id, ∅, U × U〉 is
an algebra of binary relations.
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Equations satisfied by them

1. Equations making 〈P(U × U);∪,∩,−, Id, ∅, U × U〉 into a
Boolean algebra.

2. Equations making 〈P(U × U); ◦,−1, Id〉 into an involutive
monoid.

3. Equations making 〈P(U × U);∪,∩, ◦,−,−1, Id, ∅, U × U〉 into
a Boolean Algebra with Operators, namely

I x ◦ (y ∪ z) = (x ◦ y) ∪ (x ◦ z), (x ∪ y) ◦ z = (x ◦ z) ∪ (y ◦ z)
I x ◦ ∅ = ∅ = ∅ ◦ x
I (x ∪ y)−1 = x−1 ∪ y−1

I ∅−1 = ∅

4. Triangle laws:

x ◦ y ∩ z = ∅ iff x−1 ◦ z ∩ y = ∅ iff z ◦ y−1 ∩ x = ∅.

5. Or, equivalently, (x−1 ◦ (x ◦ y)−) ∪ y− = y−.
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Atom structures
An (abstract) relation algebra (RA) is any algebra
A = 〈A;∨,∧, ;,−, ,̆ 1’, 0, 1〉 satisfying equations from the previous
slide.

Definition
Let X be the set of atoms of an atomic RA algebra A. The atom
structure At(A) is defined as At(A) = (X,E, ,̆ C ) where E is the
set of atoms below the identity, ˘ is the converse function
restricted to atoms, and C is the set of consistent triples of atoms,
i.e. those triples of atoms (a, b, c) such that a ; b ≥ c.

Atom structures can be given as multiplication tables, e.g.:

; 1’ b a
1’ 1’ b a
b b 1’ ∨ a a ∨ b
a a a ∨ b 1’ ∨ b
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Representability

Question (Jónsson and Tarski, 1948)
Is every abstract relation algebra representable as a concrete
algebra of binary relations?

Technically, an abstract RA A is a representable relation algebra
(RRA), if A is isomorphic to a subalgebra of a direct product of
algebras of binary relations.

Theorem (Lyndon, 1950)
There are non-representable relation algebras.

Theorem (Hirsch and Hodkinson, 2001)
Representability for finite RAs is undecidable.
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Representability by games
Hirsch and Hodkinson showed that representability is equivalent
to a winning strategy in a certain game (between ∀belard and
∃löıse, of course).

Consider the 16-element Boolean algebra, with atoms 1’, b, b ,̆ a.
Define composition on atoms by

Let K stand for the algebra defined by this table.

Theorem (McKenzie, 1974)
K is an abstract relation algebra, but it is not representable.
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Allen’s Interval Algebra
J.F. Allen, Maintaining knowledge about temporal intervals (1983)

I 13 atomic relations between time intervals:

X

Y X before Y Y after X
X

Y X meets Y Y is met by X
X

Y X overlaps with Y Y is overlapped by X
X

Y X starts Y Y is started by X
X

Y X during Y Y contains X
X

Y X finishes Y Y is finished by X
X

Y X equals Y Y equals X
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Region Connection Calculus (RCC8)
D.A. Randell, Z. Cui, A.G. Cohn, A spatial logic based on regions
and connection (1992)

I 8 atomic relations between regions of a plane

X DC Y X is disconnected from Y Y DC X
X EC Y X is externally connected to Y Y EC X
X TPP Y X is a tangential proper part of X Y TPPi X
X NTPP Y X is a non-tangential proper part of Y Y NTPPi X
X PO Y X properly overlaps Y Y PO X
X EQ Y X is equal to Y Y EQ X
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Weak composition
The usual relational composition does not work for RCC8.

I Problem. Naive calculation gives:
EC ; EC = DC ∪ EC ∪ PO ∪ TPP ∪ TPPi ∪ EQ. In
particular, EC ; EC ⊃ EC .

But (draw a picture)...

Definition
Let U be a set and let Π be a partition of U × U . For partition
classes R and S we define their weak composition, by

R ; S =
⋃
{A ∈ Π: (R ◦ S) ∩ A 6= ∅}.

Extend this to arbitrary unions of partition classes, putting
⋃

i∈I
Ri ;

⋃

j∈J
Sj =

⋃

(i,j)∈I×J
Ri ; Sj .
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Algebras of relations with weak composition

Definition
Let D be a set and let S be a set of binary relations over D, that
is, S ⊆ P(D ×D). We say that S is a flock if

1. S forms a boolean set algebra with top element D ×D,
2. IdD ∈ S,
3. If A ∈ S then the converse relation A−1 is in S,
4. For all A,B ∈ S there is a smallest relation C ∈ S

containing A ◦ B.

The last property follows automatically when S is finite, since it
is closed under finite intersections. Indeed, in the finite case, the
smallest C containing A ◦ B is precisely the weak composition of
A and B.
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Qualitative representation of a (non-associative) algebra

Definition
Let A = (A,∨,∧, ;,−, ,̆ 1′, 0, 1) be an algebra of the signature of
relation algebras.

I A qualitative square representation φ of an algebra A is an
injective mapping of A to the full algebra of binary relations
Re(D) over some set D, such that

1. 0φ = ∅, 1φ = D ×D, (1′)φ = IdD ,
2. (a ∨ b)φ = aφ ∪ bφ, (−a)φ = (D ×D) \ aφ,
3. (a )̆φ = (aφ )̆ ,
4. cφ ⊇ aφ ; bφ ⇐⇒ c ≥ a ; b

for all a, b, c ∈ A.
I If (a ; b)φ = aφ ; bφ for all a, b ∈ A then φ is a strong square

representation, or simply a square representation.
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Representing the non-representable
Qualitative representability is also equivalent to a winning
strategy in a game. But now ∃löıse can cheat a little...

Observation
McKenzie’s algebra K is qualitatively representable.

Some representations of K.

Theorem
The problem of determining whether a finite atom structure has a
qualitative repesentation is NP-complete.
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Networks

Definition
Let A be a non-associative algebra.

I A network (N, λ) over A consists of a set N of nodes and a
function λ : (N ×N)→ A.

I A network (N, λ) is consistent if
(a) λ(x, x) ≤ 1′,
(b) (λ(x, y) ; λ(y, z)) ∧ λ(x, z) 6= 0, for all nodes x, y, z ∈ N ,
(c) λ(x, y) ∧ λ(y, x )̆ 6= 0,
(d) λ(x, y) 6= 0, for all nodes x, y ∈ N .

I An atomic network (N, λ) is a network where λ(x, y) is
always an atom of A.

I An atomic network is consistent if it is consistent as a
network.
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Network satisfiability

I A network (N, λ) embeds into a strong representation φ if
there is a map ′ from N to the base of φ such that for all
x, y ∈ N we have (x ′, y′) ∈ λ(x, y)φ.

I Similarly, (N, λ) embeds into a qualitative representation θ if
there is a map ′ from N to the base of a qualitative
representation θ such that for all x, y ∈ N we have
(x ′, y′) ∈ λ(x, y)θ .

I A network over A is satisfiable if it embeds into some strong
representation of A and it is qualitatively satisfiable if it
embeds into some qualitative representation of A. Clearly, if
(N, λ) is strongly satisfiable then it is qualitatively
satisfiable.

I A representation φ of the finite relation algebra A is
universal if every consistent atomic network embeds into φ.
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Some (very little) model theory
Theorem
The class of qualitatively representable algebras (QRA) is not
strictly elementary. But V (QRA) is what you would expect:

I V (QRA) = SP(QRA).
I V (QRA) is a discriminator variety with simple members

belonging to QRA.

Theorem
Let A be a finite algebra of the type of relation algebras, and NA
be the class of consistent atomic networks over A.

1. If NA has JEP, then A is a QRA.
2. If NA has JEP and AP, then A is a RRA. Moreover, A has an
ω-categorical, homogeneous representation.
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Monotone not-all-equal 3-sat

Given a finite set of clauses C1, . . . , Cn, such that:
I all literals are positive
I there are precisely three literals in each clause

is there an assignment v such that
I v satisfies C1 ∧ · · · ∧ Cn
I it is not the case that v (` i1) = v (` i2) = v (` i3), for any clause
Ci = ` i1 ∨ ` i2 ∨ ` i3.

Lemma
Monotone nae-3-sat is NP-complete.

We will now interpret m-nae-3-sat in NSP over McKenzie
algebra K. This will show that network satisfiability for K is
NP-hard.
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Interpreting variables, literals and clauses
For an arbitrary instance I of m-nae-3-sat we construct a
network (NI , λI ) corresponding to I . The vertices of NI are:

I Tp and Fp, for each propositional variable p occurring in I ,
I U i

1, U i
2, U i

3, Li1, Li2, Li3, for literals ` i1, ` i2, ` i3 in each clause Ci.
The labelling function λI is required to satisfy conditions
illustrated below:

Lij

U i
j

Fp

Tp

U i
1

U i
2 U i

3

Li1Li2

Li3
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Embedding: one way

I Suppose the network (NI , λI ) is satisfiable, that is, embeds as
a subnetwork into some qualitative representation of K.

I Assign 1 to every variable p such that Fp < Tp holds in the
representation. Assign 0 to every variable p such that
Tp < Fp holds in the representation.

I This is a satisfying assignment for the original instance I of
m-nae-3-sat.

Next, we have to go the other way: for a satisfiable instance I of
m-nae-3-sat, we need to find a copy of (NI , λI ) as a subnetwork of
some qualitative representation of K.
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The other way, by example

Consider v (p) = v (q) = 1 and v (r) = v (s) = 0 on the instance

(p ∨ q ∨ r) ∧ (q ∨ r ∨ s) ∧ (r ∨ s ∨ p) ∧ (s ∨ p ∨ q)

where we have literals `1
1 , `3

3 , `4
2 instantiated by p, literals

`1
2 , `2

1 , `4
3 instantiated by q, literals `1

3 , `2
2 , `3

1 instantiated by r,
and literals `2

3 , `3
2 , `4

1 instantiated by s.

Now, construct

U1
3

U1
1

U1
2

L1
1

L1
2

L1
3

U2
3

U2
2

U2
1

L2
1

L2
3

L2
2

U3
2

U3
1

U3
3

L3
3

L3
2

L3
1

U4
1

U4
2

U4
3

L4
2

L4
3

L4
1
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The other way, by example
Next, we amalgamate the four networks by

I identifying vertices appropriately, and

I adding the T and F vertices where they should be:

U1
3 = U2

3 = U3
2 = U4

1

U1
1 = U2

2 = U3
1 = U4

2

U1
2 = U2

1 = U3
3 = U4

3

L1
1 = L2

1 = L3
3 = L4

2

L1
2 = L2

3 = L3
2 = L4

3

L1
3 = L2

2 = L3
1 = L4

1

Fq = Fp

Fs = Fr

Ts = Tr

Tq = Tp
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NP-hardness
I Using the symmetries of the situation one can show that the

configuration from the previous slide suffices in all cases.

Theorem
NSP over McKenzie algebra K is NP-hard; hence NP-complete.

Final remark
This argument in fact shows NP-hardness of NSPs over certain
fragments of any qualitative calculus Q such that:

I Q contains a relation that behaves locally as an ordering
relation, and

I Q contains a relation that behaves locally as an
incomparability relation.

This subsumes most of the existing results.
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Thank you!
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