The radicals of local residuated lattices

AAA92

27-29 May 2016, Prague

Michiro Kondo Tokyo Denki University, JAPAN

Results

1. For a good residuated lattice X, X is perfect if and only if $X/D(X) \cong \{0, 1\}$

2. For a local residuated lattice X, it is relative free of zero divisors if and only if $X = Rad(X) \cup \{0\}$

3. Every local residuated lattice is strong.

 $(X, \land, \lor, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ is called a residuated lattice if

(1) $(X, \land, \lor, 0, 1)$ is a bounded lattice; (2) $(X, \odot, 1)$ is a monoid; (3) $x \odot y \le z$ if and only if $x \le y \to z$ if and only if $y \le x \rightsquigarrow z$.

For all $x \in X$, we denote $x^- = x \to 0$ and $x^{\sim} = x \to 0$.

 $F \subseteq X \ (F \neq \emptyset)$ is called a filter $(F \in Fil(X))$ if

(F1)
$$x, y \in F \Rightarrow x \odot y \in F$$

(F2) $x \in F$ and $x \leq y \Rightarrow y \in F$

A filter F is called *normal* ($F \in Fil_n(X)$) when $x \to y \in F$ if and only if $x \rightsquigarrow y \in F$.

 $X/F = (X/F, \land, \lor, \odot, \rightarrow, \rightsquigarrow, 0/F, 1/F)$ is a residuated lattice for $F \in Fil_n(X)$.

 \downarrow

 $F \in Fil(X)$ ($F \neq X$) is called Boolean if $x \lor x^-, x \lor x^- \in F$ for any $x \in X$.

Fact (Rachunek and Šalounová,2010) For $F \in Fil_n(X)$,

F is Boolean $\iff X/F$ is a Boolean algebra.

By ord(x), we mean the least natural number $n \in \mathbb{N}$ such that $x^n = 0$, where $x^n = \underbrace{x \odot \cdots \odot x}_n$. If no such natural number, then $\operatorname{ord}(x) = \infty$.

We define

$$D(X) = \{x \in X \mid \operatorname{ord}(x) = \infty\},\$$

the set of all elements of X with infinite order.

X is called *local* if X contains a unique maximal filter.

Fact (Ciungu, 2009) The following conditions are equivalent:

- (1) D(X) is a proper filter of X;
- (2) *X* is local;
- (3) D(X) is the unique maximal filter of X;
- (4) $\operatorname{ord}(x \odot y) < \infty \Rightarrow \operatorname{ord}(x) < \infty$ or

 $\operatorname{ord}(y) < \infty$.

A local residuated lattice X is called *perfect* if $ord(x) < \infty$ or $(ord(x^{-}) = \infty$ and $ord(x^{\sim}) = \infty)$ for every $x \in X$.

Proposition For a good residuated lattice X, X is perfect $\iff 0 \notin [x \lor x^-)$ and $0 \notin [x \lor x^-)$ $\iff D(X)$ is a Boolean filter.

To show that D(X) is normal, we need another topic, state.

A map $s: X \to [0, 1]$ is called a Bosbach state if

(S1)
$$s(x) + s(x \to y) = s(y) + s(y \to x)$$

(S2) $s(x) + s(x \to y) = s(y) + s(y \to x)$
(S3) $s(0) = 0$ and $s(1) = 1$

Fact (Kondo,2014) For a Bosbach state s on a residuated lattice X,

- (1) ker(s) is a normal filter;
- (2) $X/\ker(s)$ is an MV-algebra.

Corollary For any perfect residuated lattice X, D(X) is a normal filter.

Considering the quotient algebra X/D(X) by the normal filter D(X),

Theorem For a good residuated lattice X, X is a perfect residuated lattice if and only if X/D(X) is the two-element Boolean algebra, that is,

X is perfect $\iff X/D(X) \cong \{0,1\}.$

We define

$$Rad(X) = \cap \{M \mid M \text{ is a maximal filter of } X\},\$$

$$Rad(X)^* = \{x \in X \mid x \notin Rad(X)\},\$$

$$x \perp y \iff y^{-\sim} \leq x^{-} \text{ and } x \oplus y = (y^{-} \odot x^{-})^{\sim}.$$

A map $s : Rad(X)^* \to [0, 1]$ is called a *local additive* measure if

(
$$lam_1$$
) $x \perp y$ and $x \oplus y \in Rad(X)^*$
 $\Rightarrow s(x \oplus y) = s(x) + s(y)$ for $x, y \in Rad(X)^*$;
(lam_2) $s(0) = 0$.

X is called *relative free of zero divisors* if $\exists y_1, y_2 \in Rad(X)$ s.t. $x \odot y_1 = y_2 \odot x = 0$ ⇒ x = 0 **Theorem** A residuated lattice X is relative free of zero divisors if and only if $x^-, x^- \in Rad(X)$ implies x = 0.

Corollary If X is local and relative free of zero divisors, then $D(X) = X - \{0\}$.

Fact (Extension property) (Ciungu, Georgescu and Mureşan, 2013) Let X be a local residuated lattice which is relative free of zero divisors. Then every local additive measure s on X can be extended to a 2-valued Riečan state R_s on X.

Theorem

There exists a unique local additive measure on a local residuated lattice which is relative free of zero divisors.

 \downarrow

Theorem

Let X be a local residuated lattice relative free of zero divisors and s be a local additive measure on X. Then the extension R_s of s is a Bosbach state if and only if s(x) = 0 for $x \in Rad(X)^*$. A perfect residuated lattice X is called strong if $x, y \in Rad(X)^*$ imply $x \lor y \in Rad(X)^*$.

Fact (Ciungu, Georgescu and Mureşan, 2013) **Any strong perfect residuated lattice admits a generalized state-morphism**.

For a local residuated lattice X, we have $Rad(X) = \{x \in X \mid ord(x) = \infty\}.$

Theorem Every local (and hence perfect) residuated lattice is strong.

Indeed, for $x, y \in Rad(X)^* = D(X)^*$, there exist $m, n \in \mathbb{N}$ such that $x^m = y^n = 0$.

$$\Rightarrow (x \lor y)^{m+n} \le x^m \lor y^n = 0 \lor 0 = 0$$

$$\Rightarrow x \lor y \in D(X)^* = Rad(X)^*$$

Combining these results, we conclude that

Theorem Every local residuated lattice admits

a generalized state-morphism.

Thank you for your attention!!