On rings which are sums of two PI-subrings

92th Workshop on General Algebra May 27-29, 2016, Prague, Czech Republic

M.Kępczyk

Department of Mathematics Bialystok University of Technology Poland

Marek Kępczyk m.kepczyk@pb.edu.pl

Marok Konczyk

On rings which are sums of two PI-subrings

Outline

Outline

1 Introduction

- 2 Results
 - Particular positive answers
 - Tools
 - General results
- 3 Algebras that are sums of two subalgebras satisfying polynomial identities
 - Preliminares
 - New results
 - References

イロト イヨト イヨト イヨト

Э

Outline

Outline

- 2 Results
 - Particular positive answers
 - Tools
 - General results
- 3 Algebras that are sums of two subalgebras satisfying polynomial identities
 - Preliminares
 - New results
 - References

イロト イヨト イヨト イヨト

Outline

Outline

- 2 Results
 - Particular positive answers
 - Tools
 - General results
- 3 Algebras that are sums of two subalgebras satisfying polynomial identities
 - Preliminares
 - New results
 - References

回 ト イヨト イヨト

Let *R* be an associative ring and R_1 , R_2 its subrings. Suppose that for every $r \in R$ there exist $r_1 \in R_1$ and $r_2 \in R_2$ such that $r = r_1 + r_2$. We denote it shortly by

$$R=R_1+R_2$$

(we keep this notation throughout the talk).

Ex.: $\binom{\mathbb{R}}{\mathbb{R}} \binom{\mathbb{R}}{\mathbb{R}} = \binom{\mathbb{0}}{\mathbb{0}} \binom{\mathbb{R}}{\mathbb{R}} + \binom{\mathbb{R}}{\mathbb{R}} \binom{\mathbb{0}}{\mathbb{R}}$, where \mathbb{R} is the field of real numbers.

By $A = \mathbb{Z}[x_1, x_2, ..., x_n]$ we denote the free ring in indeterminates $x_1, x_2, ..., x_n$. A polynomial $f \in A$ is called *monic* if at least one of the monomials of highest degree in the support of f has coefficient 1.

We say that B is a PI ring if and only if there is a monic polynomial $f \in A$ such that $\phi(f) = 0$ for every homomorphism $\phi : A \rightarrow B$.

Then we say that *B* satisfies the identity f = 0.

Ex.: The ring $M_2(\mathbb{R}) = \begin{pmatrix} \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} \end{pmatrix}$ satisfies the identity $[[x_1, x_2]^2, x_3] = (x_1 x_2 - x_2 x_1)^2 x_3 - x_3 (x_1 x_2 - x_2 x_1)^2 = 0.$

K. I. Beidar and A. V. Mikhalev in the paper:

Generalized polynomial identities and rings which are sums of two subrings, Algebra and Logic 34(1995), 1-5 (English translation).

stated the following problem, which is still open:

• Let $R = R_1 + R_2$. Suppose that R_1 and R_2 satisfy polynomial identities (shortly, are *PI* rings), is then also *R* a *PI* ring?

The answer to this problem is known to be positive in several cases.

Let $R = R_1 + R_2$.

Kegel (1962)

• If R_1 and R_2 are nilpotent (i.e. they satisfy the identity $x_1x_2\cdots x_n = 0$), then so is R.

Puczyłowski-Kępczyk (1996)

If R₁ and R₂ are nil of bounded index (i.e. they satisfy the identity xⁿ = 0), then so is R.

(日)

Let $R = R_1 + R_2$.

Bahturin-Giambruno (1994)

• If R_1 and R_2 are commutative, then R satisfies the identity $[x_1, x_2][x_3, x_4] = 0$.

Beidar-Mikhalev (1995)

If R₁ satisfies the identity [x₁, x₂] ··· [x_{2m-1}, x_{2m}] = 0 and R₂ satisfies the identity [x₁, x₂] ··· [x_{2n-1}, x_{2n}] = 0 for some m, n ≥ 2, then R is a PI ring.

The proof of the following theorem is based on some ideas of the paper:

K.I. Beidar and A.V. Mikhalev, Generalized polynomial identities and rings which are sums of two subrings, Algebra and Logic 34(1995), 1-5 (English translation).

Puczyłowski-Kępczyk (2001)

• Suppose \mathfrak{F} is a homomorphically closed class of rings which is closed under direct powers. If every nonzero prime ring in \mathfrak{F} contains a nonzero one-sided *PI* ideal, then \mathfrak{F} consists of *PI* rings.

Let $R = R_1 + R_2$.

Puczyłowski-Kępczyk (2001)

- (i) If R_1 or R_2 is a one-sided ideal of R and both R_1 and R_2 are PI rings, then R is a PI ring.
- (ii) If R_1 is nil of bounded index (i.e. it satisfies the identity $x^n = 0$) and R_2 is a *PI* ring, then *R* is a *PI* ring.

Assume that A is an associative K-algebra and B, C are its subalgebras such that

$$A = B + C$$

(we keep this notation throughout the talk).

We say that an algebra H almost satisfies certain property w if it has an ideal I of finite codimension in H (i.e. $\dim_{K} H/I < \infty$) which satisfies w.

Consider two arbitrary classes \mathbb{S} and \mathbb{T} of algebras, for which $0 \in \mathbb{S}$ and $0 \in \mathbb{T}$. The class of all algebras H containing an ideal I such that $I \in \mathbb{S}$ and $H/I \in \mathbb{T}$ will be denoted by \mathbb{ST} , that is

 $\mathbb{ST} = \{H \mid \text{there exists } I \lhd H \text{ such that } I \in \mathbb{S} \text{ and } H/I \in \mathbb{T}\}.$

Obviously $\mathbb{S} \subseteq \mathbb{ST}$ and $\mathbb{T} \subseteq \mathbb{ST}$.

We denote the class of all finite dimensional algebras, nilpotent algebras, nil of bounded index algebras and commutative algebras by \mathcal{F} , \mathcal{N} , \mathcal{B} and \mathcal{C} , respectively.

 $\mathcal F$ - the class of all finite dimensional algebras \mathcal{N} - the class of all nilpotent algebras $\mathcal B$ - the class of all nil of bounded index algebras \mathcal{C} - the class of all commutative algebras Let A = B + C. Kepczyk (2008) (i) If $B \in \mathcal{NF}$ and $C \in \mathcal{NF}$, then $A \in \mathcal{NF}$. (ii) If $B \in \mathcal{BF}$ and $C \in \mathcal{BF}$, then $A \in \mathcal{BF}$. (iii) If $B \in C\mathcal{F}$ and $C \in C\mathcal{F}$, then $A \in \mathcal{NCF}$.

Let f and g be polynomials such that if $R = R_1 + R_2$ and R_1 satisfies the identity f = 0 and R_2 satisfies the identity g = 0 then R is a PI ring. Moreover let S and T be the classes of all K-algebras satisfying identities f = 0 and g = 0, respectively. Let A = B + C. Kepczyk (2015)

• If $B \in SF$ and $C \in TF$, then A is a PI algebra.

Corollary:

• If $B \in \mathcal{NCF}$ and $C \in \mathcal{NCF}$, then A is a PI algebra.

Kępczyk (2016)

• Let \mathcal{M} be the class of all semisimple finite dimensional K-algebras of the form A = B + C, where B satisfies the identity h = 0 and C satisfies the identity w = 0. Then all algebras in \mathcal{M} satisfy a common polynomial identity.

- Yu. Bahturin and A. Giambruno, Identities of sums of commutative subalgebras, *Rend. Mat. Palermo* **43** (1994), 250-258.
- K.I. Beidar and A.V. Mikhalev, Generalized polynomial identities and rings which are sums of two subrings, *Algebra* and Logic 34 (1995), 1-5.
- O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, *Math. Ann.* **149** (1962/63), 258-260.

- M. Kępczyk, On algebras that are sums of two subalgebras satisfying certain polynomial identities, *Publ. Math. Debrecen* 72/3-4 (2008), 257-267.
- M. Kępczyk, Note on algebras which are sums of two Pl subalgebras, J. Algebra Appl. 14 (2015), no. 10, 1550149, 10 pp.
- M. Kępczyk and E. R. Puczyłowski, On radicals of rings which are sums of two subrings, *Arch. Math.* **66** (1996), 8-12.
- M. Kępczyk and E. R. Puczyłowski, Rings which are sums of two subrings satisfying polynomial identities, *Comm. Algebra* 29 (2001), 2059-2065.