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Jónsson terms

B. Jónsson: terms for CD varieties

J1(x , x , y) ≈ x , J2k+1(x , y , y) ≈ y ,

Ji (x , y , x) ≈ x , 1 ≤ i ≤ n,

Ji (x , y , y) ≈ Ji+1(x , y , y) 1 ≤ i ≤ 2k + 1 odd,

Ji (x , x , y) ≈ Ji+1(x , x , y) 1 < i < 2k + 1 even.

Call this J(k).

Kozik motivated by Barto: How about this directed variant?

d1(x , x , y) ≈ x , dn(x , y , y) ≈ y

di (x , y , x) ≈ x , for 1 ≤ i ≤ n,

di (x , y , y) ≈ di+1(x , x , y), for 1 ≤ i < n.

Call this DJ(n).
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Gumm terms

H. P. Gumm: terms for CM varieties (G(k)):

J1(x , x , y) ≈ x , J2k+1(x , y , y) ≈ P(x , y , y), P(x , x , y) ≈ y ,

Ji (x , y , x) ≈ x ,

Ji (x , y , y) ≈ Ji+1(x , y , y) 1 ≤ i ≤ 2k + 1 odd,

Ji (x , x , y) ≈ Ji+1(x , x , y) 1 < i < 2k + 1 even.

How about this variant (DG(n))?

d1(x , x , y) ≈ x , dn(x , y , y) ≈ p(x , y , y), p(x , x , y) ≈ y .

di (x , y , x) ≈ x for 1 ≤ i ≤ n,

di (x , y , y) ≈ di+1(x , x , y) for 1 ≤ i < n.
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Why this matters

Directed terms are simpler to describe,. . .

. . . follow from near-unanimity in a more straightforward way, . . .

. . . allow us to get undirected (classical) terms easily. . .

. . . and make some proofs more comfortable:

L. Barto’s proof of Valeriote conjecture: Finite A generates a CM
variety and is finitely related ⇒ A has few subpowers.

L. Barto, AK: Let A be a finite idempotent algebra. Then B EA iff
B EJ A (directed Jónsson absorption) and there is no B-blocker in A.
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How to find directed terms

We want to show that for all k there is an n such that J(k)⇒ DJ(n)
and G(k)⇒ DG(n).

If V is locally finite, we can use induction (and k will depend on
|FV (x , y)|),. . .

. . . but what if FV (x , y) is infinite?

We will show the J(k)⇒ DJ(n) implication here (directed Gumm
terms are similar).
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Basic setup

Take V CD variety with Jónsson terms J1, . . . , J2k+1.

Wlog V is idempotent.

We take E ,H ≤ FV (x , y)2 as follows:

H =
{

(t(xxz), t(xzz)) : t is a ternary term of V
}

E =
{

(t(xxz), t(xzz)) : t(x , z , x) ≈ x
}

We will often write just a instead of a(x , z) to save space.

We write p 99K q iff (p, q) belongs to the transitive closure of H . . .

. . . and p −→ q iff (p, q) belongs to the transitive closure of E .

Note that 99K and −→ are invariant relations. Also if t(x , z , x) ≈ x ,
then t(−→, 99K,−→) ⊂−→.

If we can prove x −→ z , we will get DJ(n) for some n.
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Basic setup, cont.

Recall that → is the transitive closure of
E = {(t(xxz), t(xzz)) : t(x , z , x) ≈ x}.
Since we assume that V has J(k), we have

x = J1(xxz)→ J1(xzz) = J2(xzz)← J2(xxz)→ . . .

. . .→ J2k(xzz)← J2k(xxz) = J2k+1(xxz)→ J2k+1(xzz) = z

If we can prove x −→ z , we will get DJ(n) for some n:

x = d1(xxz)E d1(xzz) = d2(xxz)E d2(xzz)E . . .

. . .E dn−1(xxz)E dn−1(xzz) = dn(xxz)E dn(xzz) = z .
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Boxes

A (k + 1)-box from c to b and d , denoted by B(c ; b, d), is this:

c = q1

p1

q2

p2

q3

pk

qk+1

pk+1 d

b

. . .

Lemma

Suppose that B(c ; b, d) is a (k + 1)-box. Then c → d.

Proof by using Ji (→, 99K,→) ⊂→:

c = J1(q1q1p1)→ J1(q2p1p1) = J2(q2p1p1)→ J2(q2q2p2)→ . . .

· · · → J2k+1(qk+1, pk+1, pk+1) = pk+1 → d
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Fences

An m-fence from c to d is a sequence

c = a0

b1

a1 am

bm+1 = d

. . .

We have seen that there is a k-fence from x to z , but we can do
better!

Lemma

For each 0 ≤ i < k there exists a (k − i)-fence from x to z.

Once we prove this lemma, we get a 1-fence from x to z which is
almost as good as x −→ z (see next two slides).
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Making boxes from 1-fences

Boxes are good, but how do we find them?

Lemma

Assume that there is a 1-fence x → b ← a→ d. Then for every ` > 1
there is an `-box B(x ; b, d(b, d)).

We put q1 = x and p1 = a(x , a). For 2 ≤ i ≤ `, let

qi = b(qi−1, a) and pi = a(qi , a).

We then need to verify that we have all arrows:

x = q1

p1 = a(x , a)

q2 = b(x , a)

p2 = a(q2, a)

q3 = b(q2, a)

p`−1

q`

p`

b

d(b, d)

. . .
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1-fence is enough

The general pattern: Go from 1-fence to (k + 1)-box to “→.”

Lemma

For each 0 ≤ i < k there exists a (k − i)-fence from x to z.

We now see that if we have a 1-fence x −→ b ←− a −→ z , we can
get a (k + 1)-box B(x ; b, z(b, z)) = B(x ; b, z).

Lemma

Suppose that B(c ; b, d) is a (k + 1)-box. Then c → d.

Therefore, x −→ z and we are done. . .

. . . except we did not prove the lemma about (k − i)-fences yet.
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get a (k + 1)-box B(x ; b, z(b, z)) = B(x ; b, z).

Lemma

Suppose that B(c ; b, d) is a (k + 1)-box. Then c → d.

Therefore, x −→ z and we are done. . .

. . . except we did not prove the lemma about (k − i)-fences yet.
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Finishing the proof

Lemma

For each 0 ≤ i < k there exists a (k − i)-fence from x to z.

Proof by induction on i . For 0, the Jónsson chain witnesses the fence.

Assume we have

x → b1 ← a1 → b2 ← a2 → · · · ← ak−i → bk−i+1 ← ak−i+1 → z .

Applying the 1-fence to box to “→” on the initial segment

x → b1 ← a1 → b2,

we get that x −→ b2(b1, b2).

From x → b1, we get b2(x , b2)→ b2(b1, b2).
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Intermezzo: Left squares

Lemma

If c → d and e 99K f , then c(e, f )→ d(e, f ).

It is enough to show this for (c, d) ∈ E .

Since (c , d) ∈ E , there is a term s such that s(−→, 99K,−→) ⊂−→
and

For c(x , z) ∈ F(x , z), we define c2 = c(x , c(x , z)).

From the lemma above, we get c → d ⇒ c2 → d2:

c(x , c)→ c(x , d)→ d(x , d)

(Note that x 99K d for any d ∈ F.)
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Finishing the proof

We have:

x → b1 ← a1 → b2 ← a2 → · · · ← ak−i → bk−i+1 ← ak−i+1 → z .

Also, x −→ b2(b1, b2) and b2(b1, b2)← b2(x , b2).

We now claim that this is a shorter fence (note z2 = z):

x → b2(b1, b2)← a2
2 → b2

3 ← · · · ← a2
k−i → b2

k−i+1 ← a2
k−i+1 → z2.

Here’s how we build the begining of the fence:

x → b2(b1, b2)← b2(x , b2) = b2
2 ← a2

2
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Summing it up

We have shown, using fences and boxes, that ∀k ∃n, J(k)⇒ DJ(n).

Our proof is constructive, but the n we get is big – roughly kk .

We don’t know if one can get significantly smaller n.

The method works for Gumm terms (or Jónsson absorption), too.

The machinery we have used could be useful for other proofs that
involve subpowers of free algebras.
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Thank you for your attention.
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