Complemented quasiorder lattice of a monounary algebra

Danica Jakubíková-Studenovská, Lucia Janičková

Pavol Jozef Šafárik University in Košice, Slovakia

Praha, Czech republic 27.5. – 29.5.2016

Danica Jakubíková-Studenovská, Lucia Janičková Complemented quasiorder lattice of a monounary algebra

- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - $\bullet\,$ compatible with all fundamental operations of ${\cal A}\,$
- the lattice (Quord(A), ⊆) of all quasiorders of an algebra A

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a **set**
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and
 - I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
 - how endomorphisms of quasiorders behave
 - when End q ⊆ End q' for quasiorders q, q' on a set A (End q is the set of all mappings preserving q)
 - description of the quasiorder lattice of the algebra $(A, \operatorname{End} q)$
- D. Jakubíková-Studenovská, R. Pöschel and S. Radeleczki:
 - irreducible quasiorders of monounary algebras

- a monounary algebra $\mathcal{A}=(A,f)$ can be depicted as a planar graph
- an element x ∈ A is referred to as cyclic if there exists a positive integer n such that fⁿ(x) = x

AIM

• Construct a complementary quasiorder to a given quasiorder, if the lattice Quord(A, f) is complemented.

Theorem

Let (A, f) be a monounary algebra. The lattice Quord(A, f) is complemented if and only if

- for each $a \in A$, the element f(a) is cyclic,
- there is $n \in N$ such that each cycle of (A, f) has n elements,

• either
$$n = 1$$
 or n is square-free.

Sufficiency of the condition was proved by means of transfinite induction. We will describe a **construction of a complement** to a given quasiorder of (A, f) satisfying this condition.

 \bullet Assumption: Let (A,f) be a monounary algebra such that

- for each $a \in A$, the element f(a) is cyclic,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- either n = 1 or n is square-free.
- Let $\alpha \in$ Quord (A, f).
- For $\alpha \in \text{Quord}(A, f)$, define $\bar{\alpha}$:

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

• For $a \in A$ denote by C(a) the cycle, containing f(a).

Preliminary

- Let r_{α} be the binary relation defined on the set of all cycles of (A, f) as follows: If B, D are cycles of (A, f), then we put B r_{α} D, if there are $k \in \mathbb{N}$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}, (c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$.
- If $a, b \in A$, then we set

$$a r_{\alpha} b \iff C(a) r_{\alpha} C(b).$$

• Let $A/r_{\alpha} = \{A_j : j \in J\}$. If J is a one-element set, then α is said to be **connected**.

Danica Jakubíková-Studenovská, Lucia Janičková Complemented quasiorder lattice of a monounary algebra

• A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha \cup \overline{\alpha}$.

- ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \dots, u_k = b$ elements of A' such that $(\forall i \in \{0, \dots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$
- ρ is an equivalence on A'.
- for each $D\in A'/\rho$ there are $D^*\subseteq D$ such that
 - $\bullet \ (\forall x\in D\setminus D^*)(\exists y\in D^*)((x,y)\in \alpha,(y,x)\in \alpha);$
 - $(\forall x, y \in D^*, x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$
- We choose arbitrary D^* for each D and an arbitrary representative $d^* \in D^*$.

- Let $\alpha \in$ Quord (A, f), be a connected quasiorder.
- Let A', ρ be as above.
- Let D^* and d^* be as fixed.
- Let $x, y \in A$. We put $(x, y) \in \beta$ if either x = y or (x, y) fulfills one of the steps of the following Construction (K).

Construction (K)

- Step (a). Let x, y belong to the same cycle $C, y = f^k(x)$, $\alpha \upharpoonright C = \theta_d, d/n$ and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.
- Step (c). Suppose that $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(y), y) \notin \alpha, (y, f^n(y)) \in \alpha, x = f^k(y), e/k$.

Construction (K)

- Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let α ↾ C = θ_d, d/n, e = n/d. If x ∉ A', then (x, y) ∈ β if and only if (fⁿ(x), x) ∈ α, (x, fⁿ(x)) ∉ α, y = f^k(x), e/k.
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in D^*$, $x = f^k(y)$, e/k and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in D^*$, $y = f^k(x)$, e/k and $(x, p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta, (f^n(x), f^n(y)) \in \beta, (f^n(y), y) \in \beta.$

Let (A, f) be a given algebra:

n is number of elements of each cycle.

•
$$n = 3$$

Let $\alpha \in \text{Quord}(A, f)$ (connected):

A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$. • $A' = \{6, 7, 8, 9, 10\}$

 ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and a, b belong to the same connected subcomponent of the quasiordered set of α , consisting of elements of A'.

•
$$\rho: \begin{bmatrix} 6, 7, 8, 9 & 10 \end{bmatrix}$$

• $A'/\rho: \begin{bmatrix} D_1 & 6, 7, 8, 9 \\ D_2 & 10 \end{bmatrix}$

For each $D \in A'/\rho$ let us choose $D^* \subseteq D$ and $d^* \in D^*$ such that: 1) $(\forall x \in D \setminus D^*)(\exists y \in D^*)((x, y) \in \alpha, (y, x) \in \alpha);$ 2) $(\forall x, y \in D^*, x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$

$$A'/\rho: \begin{array}{|c|c|c|} D_1 & 6,7,8,9 \\ \hline D_2 & 10 \\ \hline \end{array}$$

Let:

•
$$D_1^* = \{6, 8, 9\}$$
 and $d_1^* = 8$
• $D_2^* = \{10\}$ and $d_2^* = 10$

Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.

• It follows that $(x, y) \in \beta$ if and only if either $x, y \in \{0, 1, 2\}$, or $x, y \in \{3, 4, 5\}$.

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha$, $(a, b) \notin \alpha$.

• It follows that $(x,y) \in \beta$ if and only if $x \in \{3,4,5\}$ and $y \in \{0,1,2\}.$

Step (c). Suppose that $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

• We distinguish two cases:

2
$$x, y \in D_1^* = \{6, 8, 9\}$$
, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(8, 6), (8, 9)\}$,

2 $x, y \in D_2^* = \{10\}$, then $(x, y) \in \beta$ if and only if (x, y) = (10, 10).

Step (d1). Step (d'1).

• Both these steps operate with noncyclic elements $a \notin A'$, however, there are no such elements in (A, f).

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in D^*, x = f^k(y), e/k$ and $(y, d^*) \in \alpha$.

• We distinguish two cases (for two cycles):

1
$$x \in \{0, 1, 2\}, y \in \{6, 7, 8, 9\}.$$

2
$$x \in \{3, 4, 5\}, y = 10.$$

• It follows that $(x, y) \in \beta$ if and only if $x \in \{0, 1, 2\}, y \in \{6, 8, 9\}$ or $x \in \{3, 4, 5\}, y = 10$.

Step (d2).

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in D^*, y = f^k(x), e/k$ and $(x, d^*) \in \alpha$.

• We distinguish two cases (for two cycles):

1
$$x \in \{6, 7, 8, 9\}, y \in \{0, 1, 2\}.$$

2 $x = 10, y \in \{3, 4, 5\}.$

• It follows that $(x, y) \in \beta$ if and only if $x = 8, y \in \{0, 1, 2\}$ or $x = 10, y \in \{3, 4, 5\}.$

Step (d'2).

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta$, $(f^n(x), f^n(y)) \in \beta$, $(f^n(y), y) \in \beta$.

- In this example, remaining cases are:
 - x is a cyclic element, y is a noncyclic element from another cycle,
 - 2 x is a noncyclic element, y is a cyclic element from another cycle,
 - **③** x, y are noncyclic elements such that $x, y \notin D^*$ for any D^* .
- Then $(x, y) \in \beta$ if and only if $(x, f^3(x)) \in \beta$, $(f^3(x), f^3(y)) \in \beta$, $(f^3(y), y) \in \beta$.

Step (e). $(x, y) \in \beta$ if and only if $(x, f^3(x)) \in \beta$, $(f^3(x), f^3(y)) \in \beta$, $(f^3(y), y) \in \beta$. It follows that

- If x is a cyclic element, y is a noncyclic element from another cycle, then $(x, y) \in \beta$ iff $x \in \{3, 4, 5\}$ and $y \in \{6, 8, 9\}$.
- **2** If x is a noncyclic element, y is a cyclic element from another cycle, then $(x, y) \in \beta$ iff x = 10 and $y \in \{0, 1, 2\}$.
- So x, y are noncyclic elements such that x, y ∉ D* for any D*, then (x, y) ∈ β iff x = 10 and y ∈ {6, 8, 9}.

We constructed a complementary quasiorder β to the quasiorder α .

Theorem

Let (A, f) be a monounary algebra whose lattice Quord(A, f) is complemented. Let $\alpha \in Quord(A, f)$ be connected. If a binary relation β on A is formed by the Construction (K), then β is a complementary quasiorder to α in Quord(A, f).

The converse is not true:

• Let (A, f) be a given algebra:

Let $\alpha \in \text{Quord}(A, f)$, be a disconnected quasiorder, i.e let $A/r_{\alpha} = \{A_j : j \in J\}, |J| \ge 2$

•
$$A/r_{\alpha} : \begin{bmatrix} A_1 & 0, 1, 2, 3, 4, 5 \\ A_2 & 0', 1', 2', 3', 4', 5' \end{bmatrix}$$

- For $i \in J$ let c_i be a fixed cyclic element of some chosen cycle C_i in A_i .
- Let $c_1 = 0, c_2 = 0'$.
- We define a relation $\gamma = \{(f^k(c_i), f^k(c_j) : i, j \in J, k \in \mathbb{N})\}$ (apparently a quasiorder):

For each $i \in J$, the relation $\alpha \upharpoonright C_i$ is a congruence on C_i , thus $\alpha \upharpoonright C_i = \theta_{d_i}$.

•
$$\alpha_1 = \alpha \upharpoonright C_1 = \theta_3^1, d_1 = 3$$

• $\alpha_2 = \alpha \upharpoonright C_2 = \theta_2^2, d_2 = 2$

$$d = \gcd(d_1, d_2) = 1.$$

•
$$\alpha'_1 = \theta(c_1, f^d(c_1)) \lor \alpha_1 = \theta(0, 1) \lor \alpha_1 = \theta_1^1$$

•
$$\alpha'_2 = \theta(c_2, f^d(c_2)) \lor \alpha_2 = \theta(0', 1') \lor \alpha_2 = \theta_1^2$$

The quasiorder α'_i is connected \Rightarrow there exists β'_i , a complementary quasiorder to α_i in $\text{Quord}(A_i, f)$.

•
$$\beta'_1 = \Delta^1$$

• $\beta'_2 = \Delta^2$

• Let us define a relation

$$\beta = \gamma \ \lor \ \bigvee_{j \in J} \beta'_j = \gamma \lor (\Delta^1 \lor \Delta^2) = \gamma \lor \Delta = \gamma.$$

$$\underbrace{0 \ 0'}_{j \in J} (1 \ 1')_{j \in J} (2 \ 2')_{j \in J} (3 \ 3')_{j \in J} (4 \ 4')_{j \in J} (5 \ 5')_{j \in J}$$

• β is a complementary quasiorder to α in Quord (A, f).

)

Theorem

Let (A, f) be a monounary algebra whose lattice Quord(A, f) is complemented. Let $\alpha \in Quord(A, f)$ be disconnected. If a binary relation β on A is constructed as described, then β is a complementary quasiorder to α in Quord(A, f). Thank you for your attention.