Complemented quasiorder lattice of a monounary algebra

Danica Jakubíková-Studenovská, Lucia Janičková

Pavol Jozef Šafárik University in Košice, Slovakia

Praha, Czech republic $27.5 - 29.5.2016$

Danica Jakubíková-Studenovská, Lucia Janičková [Complemented quasiorder lattice of a monounary algebra](#page-34-0)

- **quasiorder of** $A = a$ binary relation on A, which is
	- **•** reflexive
	- **•** transitive
	- \bullet compatible with all fundamental operations of A
- the lattice $(\mathrm{Quord}(\mathcal{A}), \subseteq)$ of all quasiorders of an algebra A
- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
	- a atomistic
	- **o** dually atomistic
	- complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
	- every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and
	- I. Chajda (1993):
		- quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
	- how endomorphisms of quasiorders behave
	- when $\operatorname{End} q \subseteq \operatorname{End} q^{'}$ for quasiorders $q,q^{'}$ on a set A $(\operatorname{End} q)$ is the set of all mappings preserving q)
	- description of the quasiorder lattice of the algebra $(A, \text{End } q)$
- D. Jakubíková-Studenovská, R. Pöschel and S. Radeleczki:
	- irreducible quasiorders of monounary algebras
- \bullet a monounary algebra $\mathcal{A} = (A, f)$ can be depicted as a planar graph
- an element $x \in A$ is referred to as cyclic if there exists a positive integer *n* such that $f^n(x) = x$

AIM

Construct a complementary quasiorder to a given quasiorder, if the lattice $Quord(A, f)$ is complemented.

Theorem

Let (A, f) be a monounary algebra. The lattice $Quord(A, f)$ is complemented if and only if

- for each $a \in A$, the element $f(a)$ is cyclic,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- either $n = 1$ or n is square-free.

Sufficiency of the condition was proved by means of transfinite induction. We will describe a construction of a complement to a given quasiorder of (A, f) satisfying this condition.

• Assumption: Let (A, f) be a monounary algebra such that

- for each $a \in A$, the element $f(a)$ is cyclic,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- either $n = 1$ or n is square-free.
- Let $\alpha \in \text{Quord}(A, f)$.
- For $\alpha \in \text{Quord}(A, f)$, define $\bar{\alpha}$:

$$
(b,a)\in\bar{\alpha}\Longleftrightarrow(a,b)\in\alpha.
$$

• For $a \in A$ denote by $C(a)$ the cycle, containing $f(a)$.

Preliminary

- Let r_{α} be the binary relation defined on the set of all cycles of (A, f) as follows: If B, D are cycles of (A, f) , then we put B r_a D, if there are $k \in \mathbb{N}$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}, (c_i, c_{i+1}) \in \alpha \cup \bar{\alpha}.$
- If $a, b \in A$, then we set

$$
a r_{\alpha} b \Longleftrightarrow C(a) r_{\alpha} C(b).
$$

• Let $A/r_{\alpha} = \{A_i : j \in J\}$. If J is a one-element set, then α is said to be connected.

Preliminary

 A^\prime : all noncyclic elements x of A such that $(x,f^n(x)) \notin \alpha \cup \bar{\alpha}$.

- ρ on A^{\prime} : $(a,b)\in\rho$ if $a,b\in A^{\prime}$, $f(a)=f(b)$ and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, ..., k-1\}) (f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$
- ρ is an equivalence on $A^\prime.$
- for each $D \in A'/\rho$ there are $D^* \subseteq D$ such that
	- $(\forall x \in D \setminus D^*) (\exists y \in D^*)(x, y) \in \alpha, (y, x) \in \alpha);$
	- $(\forall x, y \in D^*, x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$
- We choose arbitrary D^* for each \bar{D} and an arbitrary representative $d^* \in D^*$.
- Let $\alpha \in \text{Quord}(A, f)$, be a connected quasiorder.
- Let A' , ρ be as above.
- Let D^* and d^* be as fixed.
- Let $x, y \in A$. We put $(x, y) \in \beta$ if either $x = y$ or (x, y) fulfills one of the steps of the following Construction (K) .

Construction (K)

- Step (a). Let x, y belong to the same cycle $C, y = f^k(x)$, $\alpha \restriction C = \theta_d$, d/n and let $e = \frac{n}{d}$ $\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k .
- Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha$, $(a, b) \notin \alpha$.
- Step (c). Suppose that $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, $C(y) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $y \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(y), y) \notin \alpha, (y, f^n(y)) \in \alpha, x = f^k(y), e/k.$

Construction (K)

- Step $(d'1)$. Suppose that y belongs to a cycle C, x is noncyclic, $C(x) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $x \notin A'$, then $(x, y) \in \beta$ if and only if $(f^{n}(x), x) \in \alpha, (x, f^{n}(x)) \notin \alpha, y = f^{k}(x), e/k.$
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $y\in A^{\prime}$, then $(x,y)\in\beta$ if and only if there is $D\in A^{\prime}/\rho$ such that $y \in D^*, x = f^k(y), e/k$ and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, $C(x) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $x\in A',$ then $(x,y)\in \beta$ if and only if there is $D\in A'/\rho$ such that $x \in D^*, y = f^k(x), e/k$ and $(x, p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^{n}(x)) \in \beta$, $(f^{n}(x), f^{n}(y)) \in \beta$, $(f^{n}(y), y) \in \beta$.

Let (A, f) be a given algebra:

 n is number of elements of each cycle.

$$
\bullet \ \ n=3
$$

Let $\alpha \in \text{Quord}(A, f)$ (connected):

 A^\prime : all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$. • $A' = \{6, 7, 8, 9, 10\}$

 ρ on A' : $(a,b) \in \rho$ if $a,b \in A'$, $f(a) = f(b)$ and a,b belong to the same connected subcomponent of the quasiordered set of α , consisting of elements of A' .

\n- $$
\rho : \boxed{6, 7, 8, 9}
$$
\n- $A'/\rho : \boxed{D_1 \mid 6, 7, 8, 9}$
\n- $A'/\rho : \boxed{D_2 \mid 10}$
\n

For each $D \in A'/\rho$ let us choose $D^* \subseteq D$ and $d^* \in D^*$ such that: 1) $(\forall x \in D \setminus D^*)(\exists y \in D^*)((x, y) \in \alpha, (y, x) \in \alpha);$ 2) $(\forall x, y \in D^*, x \neq y)((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$

$$
A'/\rho : \begin{array}{|c|c|} \hline D_1 & 6,7,8,9 \\ \hline D_2 & 10 \\ \hline \end{array}
$$

Let:

\n- •
$$
D_1^* = \{6, 8, 9\}
$$
 and $d_1^* = 8$
\n- • $D_2^* = \{10\}$ and $d_2^* = 10$
\n

Step (a). Let x, y belong to the same cycle $C, y = f^k(x)$, $\alpha \restriction C = \theta_d$, d/n and let $e = \frac{n}{d}$ $\frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k .

• It follows that $(x, y) \in \beta$ if and only if either $x, y \in \{0, 1, 2\}$, or $x, y \in \{3, 4, 5\}.$

Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha$, $(a, b) \notin \alpha$.

• It follows that $(x, y) \in \beta$ if and only if $x \in \{3, 4, 5\}$ and $y \in \{0, 1, 2\}.$

Step (c). Suppose that $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

• We distinguish two cases:

•
$$
x, y \in D_1^* = \{6, 8, 9\}
$$
, then $(x, y) \in \beta$ if and only if $(x, y) \in \{(8, 6), (8, 9)\}$,

2 $x, y \in D_2^* = \{10\}$, then $(x, y) \in \beta$ if and only if $(x, y) = (10, 10).$

Step (d1). Step (d'1).

Both these steps operate with noncyclic elements $a \notin A',$ however, there are no such elements in (A, f) .

Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, $C(y) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in D^*, x = f^k(y), e/k$ and $(y, d^*) \in \alpha$.

• We distinguish two cases (for two cycles):

$$
x \in \{0, 1, 2\}, y \in \{6, 7, 8, 9\}.
$$

$$
x \in \{3, 4, 5\}, y = 10.
$$

• It follows that $(x, y) \in \beta$ if and only if $x \in \{0, 1, 2\}, y \in \{6, 8, 9\}$ or $x \in \{3, 4, 5\}, y = 10$.

Step (d2).

Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, $C(x) = C$. Further let $\alpha \restriction C = \theta_d$, d/n , $e = \frac{n}{d}$ $\frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in D^*, y = f^k(x), e/k$ and $(x, d^*) \in \alpha$.

• We distinguish two cases (for two cycles):

\n- $$
x \in \{6, 7, 8, 9\}, y \in \{0, 1, 2\}
$$
.
\n- $x = 10, y \in \{3, 4, 5\}$.
\n

• It follows that $(x, y) \in \beta$ if and only if $x = 8, y \in \{0, 1, 2\}$ or $x = 10, y \in \{3, 4, 5\}.$

Step (d'2).

Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta$, $(f^n(x), f^n(y)) \in \beta, (f^n(y), y) \in \beta.$

- In this example, remaining cases are:
	- $\bullet x$ is a cyclic element, y is a noncyclic element from another cycle,
	- $\bullet x$ is a noncyclic element, y is a cyclic element from another cycle,
	- **3** x, y are noncyclic elements such that $x, y \notin D^*$ for any D^* .
- Then $(x, y) \in \beta$ if and only if $(x, f^3(x)) \in \beta$, $(f^3(x), f^3(y)) \in \beta, (f^3(y), y) \in \beta.$

Step (e). $(x, y) \in \beta$ if and only if $(x, f^3(x)) \in \beta$, $(f^3(x),f^3(y))\in \beta,\ (f^3(y),y)\in \beta.$ It follows that

- **1** If x is a cyclic element, y is a noncyclic element from another cycle, then $(x, y) \in \beta$ iff $x \in \{3, 4, 5\}$ and $y \in \{6, 8, 9\}$.
- **2** If x is a noncyclic element, y is a cyclic element from another cycle, then $(x, y) \in \beta$ iff $x = 10$ and $y \in \{0, 1, 2\}$.
- \bullet x,y are noncyclic elements such that $x,y\not\in D^*$ for any $D^*,$ then $(x, y) \in \beta$ iff $x = 10$ and $y \in \{6, 8, 9\}.$

We constructed a complementary quasiorder β to the quasiorder α .

Theorem

Let (A, f) be a monounary algebra whose lattice $Quord(A, f)$ is complemented. Let $\alpha \in \text{Quord}(A, f)$ be connected. If a binary relation β on A is formed by the Construction (K), then β is a complementary quasiorder to α in Quord (A, f) .

The converse is not true:

• Let (A, f) be a given algebra:

Let $\alpha \in \text{Quord}(A, f)$, be a disconnected quasiorder, i.e let $A/r_{\alpha} = \{A_i : j \in J\}, |J| \geq 2$

•
$$
A/r_{\alpha} : \begin{array}{|c|c|} \hline A_1 & 0, 1, 2, 3, 4, 5 \\ \hline A_2 & 0', 1', 2', 3', 4', 5' \\ \hline \end{array}
$$

- For $i \in J$ let c_i be a fixed cyclic element of some chosen cycle C_i in A_i .
- Let $c_1 = 0, c_2 = 0'$.
- We define a relation $\gamma = \{(f^k(c_i), f^k(c_j) : i, j \in J, k \in \mathbb{N})\}$ (apparently a quasiorder):

$$
(0 0) (1 1) (2 2) (3 3) (4 4) (5 5)
$$

For each $i \in J$, the relation $\alpha \restriction C_i$ is a congruence on C_i , thus $\alpha \restriction C_i = \theta_{d_i}.$ $\alpha_1 = \alpha \restriction C_1 = \theta_3^1, d_1 = 3$ $\alpha_2 = \alpha \restriction C_2 = \theta_2^2, d_2 = 2$ $d = \gcd(d_1, d_2) = 1.$ $\alpha'_1 = \theta(c_1, f^d(c_1)) \vee \alpha_1 = \theta(0, 1) \vee \alpha_1 = \theta_1^1$ $\alpha'_2 = \theta(c_2, f^d(c_2)) \vee \alpha_2 = \theta(0', 1') \vee \alpha_2 = \theta_1^2$ The quasiorder $\alpha_i^{'}$ $i_{i}^{'}$ is connected \Rightarrow there exists $\beta_{i}^{'}$ i' , a complementary quasiorder to α_i in $\mathrm{Quord}(A_i, f).$

\n- $$
\beta'_1 = \Delta^1
$$
\n- $\beta'_2 = \Delta^2$
\n

\n- Let us define a relation\n
$$
\beta = \gamma \lor \bigvee_{j \in J} \beta'_j = \gamma \lor (\Delta^1 \lor \Delta^2) = \gamma \lor \Delta = \gamma.
$$
\n
\n- 0 0' 1 1' 2 2' 3 3' 4 4' 5 5'
\n

 \bullet β is a complementary quasiorder to α in $\mathrm{Quord}(A, f)$.

Theorem

Let (A, f) be a monounary algebra whose lattice $Quord(A, f)$ is complemented. Let $\alpha \in \text{Quord}(A, f)$ be disconnected. If a binary relation β on A is constructed as described, then β is a complementary quasiorder to α in Quord (A, f) .

Thank you for your attention.