Invariance groups of lattice-valued functions

Eszter K. Horváth, Szeged

Co-authors: Branimir Šešelja, Andreja Tepavčević

Prague, 2016, may 27. .

Let S be a nonempty set and L a complete lattice. Every mapping $\mu: S \to L$ is called a lattice-valued (L-valued) function on S.

Let $p \in L$. A cut set of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a

Let $p \in L$. A cut set of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$
x \in \mu_{p} \text{ if and only if } \mu(x) \ge p. \tag{1}
$$

$$
\mu_{p}=\mu^{-1}(\uparrow p).
$$

Let $p \in L$. A cut set of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$
x \in \mu_p \text{ if and only if } \mu(x) \ge p. \tag{1}
$$

In other words, a p-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\mu_{\mathsf{p}} = \mu^{-1}(\uparrow \mathsf{p}).\tag{2}
$$

Let $p \in L$. A cut set of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$
x \in \mu_p \text{ if and only if } \mu(x) \ge p. \tag{1}
$$

In other words, a p-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\mu_{\mathsf{p}} = \mu^{-1}(\uparrow \mathsf{p}).\tag{2}
$$

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

If $\mu : S \to L$ is an *L*-valued function on *S*, then the collection μ_l of all cuts of μ is a closure system on S under the set-inclusion.

If μ : $S \rightarrow L$ is an L-valued function on S, then the collection μ_l of all cuts of μ is a closure system on S under the set-inclusion.

Let $\mathcal F$ be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu : S \to L$, such that the collection μ_l of cuts of μ is F.

$$
\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}. \tag{3}
$$

If $\mu : S \to L$ is an *L*-valued function on S, then the collection μ_l of all cuts of μ is a closure system on S under the set-inclusion.

Let $\mathcal F$ be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu : S \to L$, such that the collection μ_l of cuts of μ is F.

A required lattice L is the collection $\mathcal F$ ordered by the reversed-inclusion, and that $\mu : S \to L$ can be defined as follows:

$$
\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}. \tag{3}
$$

Given an L-valued function $\mu : S \to L$, we define the relation \approx on L: for $p, q \in L$ $p \approx q$ if and only if $\mu_p = \mu_q$.

Given an L-valued function $\mu : S \to L$, we define the relation \approx on L: for $p, q \in L$

$$
p \approx q \text{ if and only if } \mu_p = \mu_q. \tag{4}
$$

The relation \approx is an equivalence on L, and

 $p \approx q$ if and only if $\uparrow p \cap \mu(S) = \uparrow q \cap \mu(S)$, (5)

where $\mu(S) = \{r \in L \mid r = \mu(x) \text{ for some } x \in S\}.$

Given an L-valued function $\mu : S \to L$, we define the relation \approx on L: for $p, q \in L$

$$
p \approx q \text{ if and only if } \mu_p = \mu_q. \tag{4}
$$

The relation \approx is an equivalence on L, and

 $p \approx q$ if and only if $\uparrow p \cap \mu(S) = \uparrow q \cap \mu(S)$, (5)

where $\mu(S) = \{r \in L \mid r = \mu(x) \text{ for some } x \in S\}.$

We denote by $L \approx$ the collection of equivalence classes under \approx .

Let (μ_L, \leq) be the poset with $\mu_L = {\mu_p | p \in L}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_p, \mu_q \in \mu_L$,

 $\mu_{p} \leq \mu_{q}$ if and only if $\mu_{q} \subseteq \mu_{p}$.

$$
\bigcap \{ \mu_{p} \mid p \in L_{1} \} = \mu_{\vee (p \mid p \in L_{1})}.
$$
 (6)

Let (μ_L, \leq) be the poset with $\mu_L = {\mu_p | p \in L}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_{p}, \mu_{q} \in \mu_{L}$,

 $\mu_{p} \leq \mu_{q}$ if and only if $\mu_{q} \subseteq \mu_{p}$.

 (μ_L, \leq) is a complete lattice and for every collection $\{\mu_p \mid p \in L_1\}, L_1 \subseteq L_2$ of cuts of μ , we have

$$
\bigcap \{ \mu_{\rho} \mid \rho \in L_1 \} = \mu_{\vee(\rho | \rho \in L_1)}.
$$
 (6)

Each \approx -class contains its supremum:

$$
\bigvee [p]_{\approx} \in [p]_{\approx}.\tag{7}
$$

Each \approx -class contains its supremum:

$$
\bigvee [p]_{\approx} \in [p]_{\approx}.\tag{7}
$$

The mapping $\rho\mapsto \bigvee[\rho]_{\approx}$ is a closure operator on $L.$

Each \approx -class contains its supremum:

$$
\bigvee [p]_{\approx} \in [p]_{\approx}.\tag{7}
$$

The mapping $\rho\mapsto \bigvee[\rho]_{\approx}$ is a closure operator on $L.$

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

 $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)$.

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):

 (i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\,\,\bigvee [p]_{\approx} \leq_{L}\,\bigvee [q]_{\approx}.$

 (i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\,\,\bigvee [p]_{\approx} \leq_{L}\,\bigvee [q]_{\approx}.$ (\emph{ii}) The mapping $[p]_{\approx}\mapsto\bigvee[p]_{\approx}$ is an injection of $L/{\approx}$ into L.

 (i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\,\,\bigvee [p]_{\approx} \leq_{L}\,\bigvee [q]_{\approx}.$ (\emph{ii}) The mapping $[p]_{\approx}\mapsto\bigvee[p]_{\approx}$ is an injection of $L/{\approx}$ into L.

The sub-poset $(\bigvee[p]_{\approx},\leq_{L})$ of L is isomorphic to the lattice $(L/{\approx},\leq_{L/{\approx}})$ under $\bigvee[p]_{\approx}\mapsto[p]_{\approx}.$

 (i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\,\,\bigvee [p]_{\approx} \leq_{L}\,\bigvee [q]_{\approx}.$ (\emph{ii}) The mapping $[p]_{\approx}\mapsto\bigvee[p]_{\approx}$ is an injection of $L/{\approx}$ into L.

The sub-poset $(\bigvee[p]_{\approx},\leq_{L})$ of L is isomorphic to the lattice $(L/{\approx},\leq_{L/{\approx}})$ under $\bigvee[p]_{\approx}\mapsto[p]_{\approx}.$

Let μ : $S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

We take the lattice (\mathcal{F}, \leq) , where $\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)$ is the collection of cuts of μ , and the order \leq is the dual of the set inclusion.

$$
\widehat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}. \tag{8}
$$

$$
\widehat{\mu}(x) := \bigcap \{ \mu_{p} \in \mu_{L} \mid x \in \mu_{p} \}.
$$
 (8)

$$
\widehat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}. \tag{8}
$$

Properties:

$$
\widehat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}. \tag{8}
$$

Properties:

$\widehat{\mu}$ has the same cuts as μ .

$$
\widehat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}. \tag{8}
$$

Properties:

 $\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation \approx .

$$
\widehat{\mu}(x) := \bigcap \{ \mu_{p} \in \mu_{L} \mid x \in \mu_{p} \}.
$$
 (8)

Properties:

 $\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation \approx .

Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\hat{\mu}$.

Canonical representation of $\mu : S \to L$

By the definition, every element of the codomain lattice of $\hat{\mu}$ is a cut of μ . Therefore, if $f \in \mathcal{F}$, then $f = \mu_p$ for some $p \in L$, and for the cut $\hat{\mu}_f$ of $\hat{\mu}_p$, by the definition of a cut and by [\(8\)](#page-22-0), we have

$$
\widehat{\mu}_f = \{x \in S \mid \widehat{\mu}(x) \ge f\} = \{x \in S \mid \widehat{\mu}(x) \subseteq \mu_p\} \n= \{x \in S \mid \bigcap \{\mu_q \mid x \in \mu_q\} \subseteq \mu_p\} = \mu_p = f.
$$

Therefore, the collection of cuts of $\hat{\mu}$ is

$$
\widehat{\mu}_{\mathcal{F}} = \{ Y \subseteq S \mid Y = \widehat{\mu}_{\mu_p}, \text{ for some } \mu_p \in \mu_L \}.
$$

The lattices of cuts of a lattice-valued function μ and of its canonical representation $\widehat{\mu}$ coincide.

Example

 $S = \{a, b, c, d\}$

$$
\mu = \begin{pmatrix} a & b & c & d \\ p & s & r & t \end{pmatrix} \qquad \qquad \nu = \begin{pmatrix} a & b & c & d \\ z & w & m & v \end{pmatrix}
$$

$$
\widehat{\mu} = \widehat{\nu} = \begin{pmatrix} a & b & c & d \\ \{a\} & \{a, b\} & \{c\} & \{c, d\} \end{pmatrix}
$$

Lattice-valued Boolean functions

A Boolean function is a mapping $f: \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$.

$$
f_p: \{0, 1, \ldots, k-1\}^n \to \{0, 1\},\
$$

Lattice-valued Boolean functions

A Boolean function is a mapping $f: \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

 $f: \{0,1\}^n \to L,$

where L is a complete lattice.

We use also p-cuts of lattice-valued functions as characteristic functions: for $f: \{0, 1, \ldots, k-1\}^n \to L$ and $p \in L$, we have

$$
f_p: \{0, 1, \ldots, k-1\}^n \to \{0, 1\},\
$$

A Boolean function is a mapping $f: \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^n\rightarrow L,
$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

$$
f:\{0,1,\ldots,k-1\}^n\to L,
$$

where L is a complete lattice.

We use also p-cuts of lattice-valued functions as characteristic functions: for $f: \{0, 1, \ldots, k-1\}^n \to L$ and $p \in L$, we have

$$
f_p: \{0, 1, \ldots, k-1\}^n \to \{0, 1\},\
$$

A Boolean function is a mapping $f: \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^n\to L,
$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k - 1\}$:

$$
f:\{0,1,\ldots,k-1\}^n\to L,
$$

where L is a complete lattice.

We use also p-cuts of lattice-valued functions as characteristic functions: for $f: \{0, 1, \ldots, k-1\}^n \to L$ and $p \in L$, we have

$$
f_p: \{0, 1, \ldots, k-1\}^n \to \{0, 1\},\
$$

such that $f_p(x_1, \ldots, x_n) = 1$ if and only if $f(x_1, \ldots, x_n) \geq p$.

A Boolean function is a mapping $f: \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^n\rightarrow L,
$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k - 1\}$:

$$
f:\{0,1,\ldots,k-1\}^n\to L,
$$

where L is a complete lattice.

We use also p-cuts of lattice-valued functions as characteristic functions: for $f: \{0, 1, \ldots, k-1\}^n \to L$ and $p \in L$, we have

$$
f_p: \{0, 1, \ldots, k-1\}^n \to \{0, 1\},\
$$

such that $f_p(x_1, \ldots, x_n) = 1$ if and only if $f(x_1, \ldots, x_n) \geq p$. Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.

As usual, by S_n we denote the symmetric group of all permutations over an *n*-element set. If f is an *n*-variable function on a finite domain X and $\sigma \in S_n$, then f is **invariant** under σ , symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$
f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).
$$

under any permutation from $S_n \setminus G$, then G is called the invariance

As usual, by S_n we denote the symmetric group of all permutations over an *n*-element set. If f is an *n*-variable function on a finite domain X and $\sigma \in S_n$, then f is **invariant** under σ , symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$
f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).
$$

If f is invariant under all permutations in $G \leq S_n$ and not invariant under any permutation from $S_n \setminus G$, then G is called the invariance **group** of f, and it is denoted by $G(f)$.

If G is the invariance group of a function $f: \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

If G is the invariance group of a function $f: \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m-representable* if it is the invariance group of a function $f: \{0,1\}^n \rightarrow \{1,\ldots,m\};$

If G is the invariance group of a function $f: \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m-representable* if it is the invariance group of a function $f: \{0,1\}^n \rightarrow \{1,\ldots,m\};$

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$.

If G is the invariance group of a function $f: \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m-representable* if it is the invariance group of a function $f: \{0,1\}^n \rightarrow \{1,\ldots,m\};$

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$. By the above, representability is equivalent with

 $(2, \infty)$ -representability.

In particular, a $(2, L)$ -representable group is the invariance group of a lattice-valued Boolean function $f: \{0,1\}^n \to L$.

L-representable if and only if it is Galois closed over 2.

In particular, a $(2, L)$ -representable group is the invariance group of a lattice-valued Boolean function $f: \{0,1\}^n \to L$.

The notion of $(2, L)$ -representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id,(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not (2, 2)-representable.

L-representable if and only if it is Galois closed over 2.

In particular, a $(2, L)$ -representable group is the invariance group of a lattice-valued Boolean function $f: \{0,1\}^n \to L$.

The notion of $(2, L)$ -representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id,(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subset S_n$ is L-representable if and only if it is Galois closed over 2.

In particular, a $(2, L)$ -representable group is the invariance group of a lattice-valued Boolean function $f: \{0,1\}^n \to L$.

The notion of $(2, L)$ -representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id,(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is (k, L) -representable if and only if it is Galois closed over the k-element domain.

Let $O_k^{(n)} = \{f \mid f: \mathbf{k}^n \to \mathbf{k}\}$ denote the set of all *n*-ary operations on **k**, and for $F \subseteq O^{(n)}_k$ $\zeta_k^{(n)}$ and $G \subseteq S_n$ let

$$
F^{+} := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \qquad \overline{F}^{(k)} := (F^{+})^{+},
$$

$$
G^{+} := \{ f \in O_{k}^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^{+})^{+}.
$$

over **k**, and we say that G is Galois closed over **k** if $\overline{G}^{(k)}=G.$

Let $O_k^{(n)} = \{f \mid f: \mathbf{k}^n \to \mathbf{k}\}$ denote the set of all *n*-ary operations on **k**, and for $F \subseteq O^{(n)}_k$ $\zeta_k^{(n)}$ and $G \subseteq S_n$ let

$$
F^{+} := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \qquad \overline{F}^{(k)} := (F^{+})^{+},
$$

$$
G^{+} := \{ f \in O_{k}^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^{+})^{+}.
$$

The assignment $\,G \mapsto \overline{G}^{(k)}$ is a closure operator on $\,S_{n},\,$ and it is easy to see that $\overline{G}^{(k)}$ is a subgroup of S_n for every subset $G \subseteq S_n$ (even if G is not a group). For $G \leq S_n$, we call $\overline{G}^{(k)}$ the Galois closure of G over **k**, and we say that G is Galois closed over **k** if $\overline{G}^{(k)} = G$.

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

$$
\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.
$$

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$
\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.
$$

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max\left(2^d, d^2 + d\right)$

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$
\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max\left(2^d, d^2 + d\right)$

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$
\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over **k** if and only if $G = A_B \times L$ or $G \leq_{sd} S_B \times L$, where $B \subseteq n$ is such that $D := n \setminus B$ has less than d elements, and L is an arbitrary permutation group on D .

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}$.

 $(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p.$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}$.

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{p} = \mu \circ (\mathcal{I}_{L})_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{L}: L \to L$.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}$.

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{p} = \mu \circ (\mathcal{I}_{L})_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{L}: L \to L$. (ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \to A$.

 $(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p.$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{\mathbf{p}} = \mu \circ (\mathcal{I}_L)_{\mathbf{p}}$, where \mathcal{I}_L is the identity mapping $\mathcal{I}_L : L \to L$. (ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \to A$. (iii) $(\mu \circ \psi)_{p} = \mu \circ \psi_{p}$, where ψ is a map $\psi : L \to L$.

Proposition Let $f: \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

Proposition Let $f: \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

Proposition Let $f: \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1: \{0, ..., k-1\}^n$ → L_1 and $f_2: \{0, ..., k-1\}^n$ → L_2 are two *n*-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.

For every $n \in \mathbb{N}$, there is a lattice L and a lattice valued Boolean function $F: \{0,1\}^n \to L$ satisfying the following: If $G \leq S_n$ and $G = G(f)$ for a Boolean function f, then $G = G(F_p)$, for a cut F_p of F.

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \to \{0, \ldots, k-1\}$ if and only if $k \geq n$.

function $F: \{0, \ldots, k-1\}^n \to L$ such that the following holds: If

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \to \{0, \ldots, k-1\}$ if and only if $k \geq n$.

If $k > n$, then for every subgroup G of S_n there exists a function $f: \{0, \ldots, k-1\}^n \rightarrow \{0, 1\}$ such that the invariance group of f is exactly G.

function $F: \{0, \ldots, k-1\}^n \to L$ such that the following holds: If

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \to \{0, \ldots, k-1\}$ if and only if $k \geq n$.

If $k \ge n$, then for every subgroup G of S_n there exists a function $f: \{0, \ldots, k-1\}^n \rightarrow \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \ge n$, there is a lattice L and a lattice valued function $F: \{0, \ldots, k-1\}^n \to L$ such that the following holds: If $G \leq S_n$, then $G = G(F_n)$ for a cut F_n of of F.

Thank you for your attention!