Almost all strongly connected semicomplete digraphs are idempotent trivial

Petar Đapić¹, Petar Marković¹ i Barnaby Martin²

¹ DMI, PMF Univerziteta u Novom Sadu ² Middlesex University, London, UK

Novi Sad, maj 2016

A digraph H is *semicomplete* if it is irreflexive (loopless) and for any two distinct vertices i and j, at least one of ij and ji is an edge of H. If E(H) never contains both ij and ji, then it is a *tournament*.

A digraph H is *semicomplete* if it is irreflexive (loopless) and for any two distinct vertices i and j, at least one of ij and ji is an edge of H. If E(H) never contains both ij and ji, then it is a *tournament*.

Definition

A semicomplete digraph $\mathcal{G} = (V, \rightarrow)$ is strongly connected if for all $u, v \in G$ there exist $n \in \omega$ and vertices $a_1, \ldots, a_n \in V$ such that $u \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow v$.

A digraph H is *semicomplete* if it is irreflexive (loopless) and for any two distinct vertices i and j, at least one of ij and ji is an edge of H. If E(H) never contains both ij and ji, then it is a *tournament*.

Definition

A semicomplete digraph $\mathcal{G} = (V, \rightarrow)$ is strongly connected if for all $u, v \in G$ there exist $n \in \omega$ and vertices $a_1, \ldots, a_n \in V$ such that $u \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow v$.

Definition

A *k*-ary polymorphism of a graph \mathcal{H} is a homomorphism from \mathcal{H}^k to \mathcal{H} . A polymorphism f is idempotent when, for all x, $f(x, \ldots, x) = x$.

イロト 不得 トイヨト イヨト 二日

A tournament $\mathcal{T} = (\mathcal{T}, \rightarrow)$ is *transitive* if from $x \rightarrow y$ and $y \rightarrow z$ follows $x \rightarrow z$.

A tournament $\mathcal{T} = (\mathcal{T}, \rightarrow)$ is *transitive* if from $x \rightarrow y$ and $y \rightarrow z$ follows $x \rightarrow z$.

Definition

A tournament is *locally transitive* if for all $v \in T$, the induced subtournaments on the sets $v^- := \{x \in T : x \to v\}$ and $v^+ := \{x \in T : v \to x\}$ are transitive.

A digraph is a *core* if all of its endomorphisms are automorphisms.

All finite semicomplete digraphs are cores.

A digraph is a *core* if all of its endomorphisms are automorphisms.

All finite semicomplete digraphs are cores.

Theorem

For all finite core digraphs \mathcal{G} with > 2 vertices which have no idempotent polymorphisms other than projections, $QCSP(\mathcal{G})$ is Pspace-complete.

A digraph is a *core* if all of its endomorphisms are automorphisms.

All finite semicomplete digraphs are cores.

Theorem

For all finite core digraphs \mathcal{G} with > 2 vertices which have no idempotent polymorphisms other than projections, $QCSP(\mathcal{G})$ is Pspace-complete.

Definition

The digraphs whose only idempotent polymorphisms are projections are *idempotent trivial*.

A digraph is a *core* if all of its endomorphisms are automorphisms.

All finite semicomplete digraphs are cores.

Theorem

For all finite core digraphs \mathcal{G} with > 2 vertices which have no idempotent polymorphisms other than projections, $QCSP(\mathcal{G})$ is Pspace-complete.

Definition

The digraphs whose only idempotent polymorphisms are projections are *idempotent trivial*.

The goal of this lecture is

Theorem

If \mathcal{G} is a strongly connected semicomplete digraph with more than one cycle, then $QCSP(\mathcal{G})$ is Pspace-complete.

Petar Đapić (Novi Sad)

QCSP via polimophisms

A subset $L \subseteq V$ is nice if the induced subgraph on L is strongly connected and all idempotent polymorphisms of \mathcal{G} restrict to L as projections.

э

A subset $L \subseteq V$ is nice if the induced subgraph on L is strongly connected and all idempotent polymorphisms of \mathcal{G} restrict to L as projections.

Lemma (A1)

Let L be a nice subset of V and let v be a vertex such that $v^+ \cap L \neq \emptyset \neq v^- \cap L$. Then $L \cup \{v\}$ is nice.

A subset $L \subseteq V$ is nice if the induced subgraph on L is strongly connected and all idempotent polymorphisms of \mathcal{G} restrict to L as projections.

Lemma (A1)

Let L be a nice subset of V and let v be a vertex such that $v^+ \cap L \neq \emptyset \neq v^- \cap L$. Then $L \cup \{v\}$ is nice.

Lemma (A2)

Let $L = \{a, b\}$ be compatible with (i. e. closed under) the idempotent polymorphisms of \mathcal{G} and let $a \leftrightarrow b$. If $v \in V \setminus L$ is such that $v^+ \cap L \neq \emptyset \neq v^- \cap L$ then $\{a, b, v\}$ is nice.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Let $\mathcal{G} = (V, \rightarrow)$ be a strongly connected semicomplete digraph. We say that L splits \mathcal{G} if $\emptyset \neq L \subsetneq V$ is a subset with the following properties: **1** $\{L, L^{\forall +}, L^{\forall -}\}$ is a partition of V and **2** for any 2-cycle $a \leftrightarrow b$ in \mathcal{G} , $\{a, b\}$ is contained in one of L, $L^{\forall +}$, or $L^{\forall -}$.

Proof

Lemma (A3)

Let $\mathcal{G} = (V, \rightarrow)$ be a strongly connected semicomplete digraph which is not a cycle. Let L_0 be either a 2-cycle or a nice subset of V. Then either all idempotent polymorphisms of \mathcal{G} are projections, or there exists a subset $L \subseteq V$ such that L splits \mathcal{G} , $L_0 \subseteq L$ and either the induced subgraph on L is a 2-cycle, or L is nice.

3 K K 3 K -

Lemma (A3)

Let $\mathcal{G} = (V, \rightarrow)$ be a strongly connected semicomplete digraph which is not a cycle. Let L_0 be either a 2-cycle or a nice subset of V. Then either all idempotent polymorphisms of \mathcal{G} are projections, or there exists a subset $L \subseteq V$ such that L splits \mathcal{G} , $L_0 \subseteq L$ and either the induced subgraph on L is a 2-cycle, or L is nice.

Lemma (A4,A5)

Let $\mathcal{G} = (V, \rightarrow)$ be a strongly connected semicomplete digraph which is not a P-graph and let L split \mathcal{G} . Then there exist vertices $a_0, a_1, b_0 \in V$ such that $a_1 \leftarrow a_0 \rightarrow b_0 \rightarrow a_1$ and that either A4 $b_0 \in L^{\forall -}$ and $a_0, a_1 \in L^{\forall +}$, or A5 $b_0 \in L^{\forall +}$ and $a_0, a_1 \in L^{\forall -}$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Proof

Definition

A locally transitive tournament $\mathcal{T} = (\{1, \ldots, n\}, \rightarrow)$ is regular iff n = 2k + 1 for some positive integer k and for all $1 \le i < j \le 2k + 1$, $i \rightarrow j$ iff $j - i \le k + 1$ (otherwise $j \rightarrow i$). In other words, in the unique (up to isomorphism) regular locally transitive tournament with 2k + 1 vertices, $\varphi_{\mathcal{T}}(i) = i + k$ if $i \le k + 1$, and $\varphi_{\mathcal{T}}(i) = i - k - 1$ if i > k + 1.

(日)

A locally transitive tournament $\mathcal{T} = (\{1, \ldots, n\}, \rightarrow)$ is regular iff n = 2k + 1 for some positive integer k and for all $1 \le i < j \le 2k + 1$, $i \rightarrow j$ iff $j - i \le k + 1$ (otherwise $j \rightarrow i$). In other words, in the unique (up to isomorphism) regular locally transitive tournament with 2k + 1 vertices, $\varphi_{\mathcal{T}}(i) = i + k$ if $i \le k + 1$, and $\varphi_{\mathcal{T}}(i) = i - k - 1$ if i > k + 1.

Definition

The semicomplete digraph $\mathcal{G}_{\mathcal{T}} = (V, E)$ will be called a P-graph parametrized by the locally transitive tournament $\mathcal{T} = (\{1, \ldots, n\}, \rightarrow)$ if there exists a partition ρ of the vertex set V into nonempty subsets A_1, \ldots, A_n such that for all $i \neq j$ and all $a \in A_i$ and $b \in A_j$, $ab \in E$ iff $i \rightarrow j$ in \mathcal{T} .

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Lemma

Let $\mathcal{T} = (\{1, \ldots, n\}, \rightarrow)$ be a locally transitive tournament. Then $\rho := \ker \varphi_{\mathcal{T}}$ is a congruence of \mathcal{T} such that \mathcal{T}/ρ is a regular locally transitive tournament $\mathcal{T}', \mathcal{T}$ is a P-graph parametrized by \mathcal{T}' , and every P-graph parametrized by \mathcal{T} is also a P-graph parametrized by \mathcal{T}' .

3 K K 3 K

Image: A matrix and a matrix

Lemma

Let $\mathcal{T} = (\{1, \ldots, n\}, \rightarrow)$ be a locally transitive tournament. Then $\rho := \ker \varphi_{\mathcal{T}}$ is a congruence of \mathcal{T} such that \mathcal{T}/ρ is a regular locally transitive tournament $\mathcal{T}', \mathcal{T}$ is a P-graph parametrized by \mathcal{T}' , and every P-graph parametrized by \mathcal{T} is also a P-graph parametrized by \mathcal{T}' .

Lemma

Every idempotent polymorphism f of a regular locally transitive tournament $\mathcal{T} = (\{1, 2, ..., 2k + 1\}, \rightarrow)$, where k > 1, is a projection.

イロト 不得 トイヨト イヨト 二日

Theorem (B1)

Every idempotent polymorphism f of a P-graph $\mathcal{G}_{\mathcal{T}}$ parametrized by the locally transitive tournament \mathcal{T} is a projection, except when $\mathcal{G}_{\mathcal{T}}$ is the 3-cycle.

э

Theorem (B1)

Every idempotent polymorphism f of a P-graph $\mathcal{G}_{\mathcal{T}}$ parametrized by the locally transitive tournament \mathcal{T} is a projection, except when $\mathcal{G}_{\mathcal{T}}$ is the 3-cycle.

Lemma (B2)

Let $\mathcal{G} = (V, \rightarrow)$ be a strongly connected semicomplete digraph which contains at least one 2-cycle. Then for each 2-cycle $a \leftrightarrow b$ in \mathcal{G} , the set $\{a, b\}$ is closed with respect to all idempotent polymorphisms of \mathcal{G} and each binary idempotent polymorphism of \mathcal{G} restricted to $\{a, b\}$ is a projection.

- 20

Proof

Lemma (B3)

If a strongly connected tournament $\mathcal{G} = (V, \rightarrow)$ is not a P-graph and for all $v \in V$, all strong components of the induced subgraphs on v^+ and on v^- are of sizes 1 or 3, then there is a 3-cycle $a \rightarrow b \rightarrow c \rightarrow a$ in \mathcal{G} such that all idempotent polymorphisms of \mathcal{G} restrict to $\{a, b, c\}$ as projections.

Lemma (B3)

If a strongly connected tournament $\mathcal{G} = (V, \rightarrow)$ is not a P-graph and for all $v \in V$, all strong components of the induced subgraphs on v^+ and on v^- are of sizes 1 or 3, then there is a 3-cycle $a \rightarrow b \rightarrow c \rightarrow a$ in \mathcal{G} such that all idempotent polymorphisms of \mathcal{G} restrict to $\{a, b, c\}$ as projections.

Lemma (B4)

A strongly connected semicomplete digraph with at most four vertices which is not a cycle has only trivial idempotent polymorphisms.

Lemma (B3)

If a strongly connected tournament $\mathcal{G} = (V, \rightarrow)$ is not a P-graph and for all $v \in V$, all strong components of the induced subgraphs on v^+ and on v^- are of sizes 1 or 3, then there is a 3-cycle $a \rightarrow b \rightarrow c \rightarrow a$ in \mathcal{G} such that all idempotent polymorphisms of \mathcal{G} restrict to $\{a, b, c\}$ as projections.

Lemma (B4)

A strongly connected semicomplete digraph with at most four vertices which is not a cycle has only trivial idempotent polymorphisms.

Theorem

A strongly connected semicomplete digraph which is not a cycle has only trivial idempotent polymorphisms.

Petar Đapić (Novi Sad)

QCSP via polimophisms

Novi Sad, maj 2016 11 / 12

э

イロト イポト イヨト イヨト

THANK YOU FOR YOUR ATTENTION!

▶ < ∃ >

< □ > < 同 >

æ