

### Multifraction reduction and the Word Problem for Artin-Tits groups

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

AAA92, Prague, May 2016

• A new approach to the Word Problem for Artin-Tits groups (and other groups),

- ▶ based on a rewrite system extending free reduction,
- ▶ reminiscent of the Dehn algorithm for hyperbolic groups,
- ▶ proved in particular cases, conjectured in the general case.

### • 1. The enveloping group of a monoid

- Mal'cev theorem
- Ore theorem

# • 2. Reduction of multifractions

- Free reduction
- Division
- Reduction

# • 3. Artin-Tits monoids

- The FC case
- The general case

# • 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

# • 1. The enveloping group of a monoid

- Mal'cev theorem
- Ore theorem
- 2. Reduction of multifractions
  - Free reduction
  - Division
  - Reduction
- 3. Artin-Tits monoids
  - The FC case
  - The general case

# • 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

• <u>Proposition</u>: For every monoid *M*, there exists a unique group  $\mathcal{U}(M)$  and a morphism  $\phi : M \to \mathcal{U}(M)$  s.t. every morphism from *M* to a group factors through  $\phi$ . If  $M = \langle S \mid R \rangle^+$ , then  $\mathcal{U}(M) = \langle S \mid R \rangle$ .

• If *M* is not cancellative,  $\phi$  is not injective:  $ab = ac \Rightarrow \phi(ab) = \phi(ac) \Rightarrow \phi(b) = \phi(c)$ .

• Even if M is cancellative,  $\phi$  need not be injective: for  $M = \langle \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{a}', \mathbf{b}', \mathbf{c}', \mathbf{d}' | \mathbf{ac} = \mathbf{bd}, \mathbf{ac}' = \mathbf{bd}', \mathbf{a}'\mathbf{c} = \mathbf{b}'\mathbf{d} \rangle^+, \phi(\mathbf{a}'\mathbf{c}') = \phi(\mathbf{a}'\mathbf{c})\phi(\mathbf{ac})^{-1}\phi(\mathbf{ac}') = \phi(\mathbf{b}'\mathbf{d})\phi(\mathbf{bd})^{-1}\phi(\mathbf{bd}') = \phi(\mathbf{b}'\mathbf{d}').$ 

• <u>Theorem</u> (Mal'cev, 1937): There exists an explicit infinite list of conditions  $C_1, C_2, ...$  such that M embeds in  $\mathcal{U}(M)$  iff M is cancellative and satisfies  $C_1, C_2, ...$ 

(C<sub>1</sub>):  $\forall a, b, c, d, a', b', c', d'$  ((ac = bd and ac' = bd' and a'c = b'd)  $\Rightarrow a'c' = b'd'$ ).

ション ふゆ チョン チョン ヨー ものの

• An easy case:

• <u>Theorem</u> (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in  $\mathcal{U}(M)$  and every element of  $\mathcal{U}(M)$  is represented as  $ab^{-1}$  with a, b in M.

• " $\mathcal{U}(M)$  is a group of (right) fractions for M "

- <u>Definition</u>: a left-divides b, or b is a right-multiple of a, if  $\exists x (ax = b)$ .  $\leftarrow a \leq b$ 
  - ▶ 2-Ore condition: Any two elements admits a common right-multiple.

• Examples:  $\mathbb{N}$  vs.  $\mathbb{Z}$ ,  $\mathbb{Z}^+$  vs.  $\mathbb{Q}^+$ , K[X] vs. K(X), etc.

 Whenever 1 is the only invertible element, ≤ (left-divisibility) is a partial ordering; left-gcd:= greatest lower bound, right-lcm:= least upper bound (when they exist).

• <u>Definition</u>: A gcd-monoid is a cancellative monoid, in which 1 is the only invertible element and any two elements admit a left- and a right-gcd.

• <u>Corollary</u>: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in U(M) and every element of U(M) is represented by a unique irreducible fraction.

 $ab^{-1}$  with  $a, b \in M$  and right-gcd(a, b) = 1

- Examples:
  - $M = B_n^+$ , braid monoid on *n* strands, with  $U(M) = B_n$ .
  - ▶ more generally: all Garside monoids and the associated Garside groups.

- 1. The enveloping group of a monoid
  - Mal'cev theorem
  - Ore theorem

# • 2. Reduction of multifractions

- Free reduction
- Division
- Reduction
- 3. Artin-Tits monoids
  - The FC case
  - The general case

# • 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

• When the 2-Ore condition fails (no common multiples), no fractional expression.

• Example:  $M = F^+$ , a free monoid; then M embeds in U(M), a free group;

- ▶ No fractional expression for the elements of U(M),
- But: unique expression a<sub>1</sub>a<sub>2</sub><sup>-1</sup>a<sub>3</sub>a<sub>4</sub><sup>-1</sup> ··· with a<sub>1</sub>, a<sub>2</sub>, ... in M and for i odd: a<sub>i</sub> and a<sub>i+1</sub> do not finish with the same letter, for i even: a<sub>i</sub> and a<sub>i+1</sub> do not begin with the same letter.

► a "freely reduced word"

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
  - ▶ rule  $D_{i,x} := \begin{cases} \text{for } i \text{ odd, delete } x \text{ at the end of } a_i \text{ and } a_{i+1} \text{ (if possible...)}, \\ \text{for } i \text{ even, delete } x \text{ at the beginning of } a_i \text{ and } a_{i+1} \text{ (if possible...)}. \end{cases}$
  - ▶ Then the system of all rules  $D_{i,x}$  is (locally) confluent:



▶ Every sequence <u>a</u> rewrites into a unique irreducible sequence ("convergence"). □

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- When *M* is not free, the rewrite rule  $D_{i,x}$  can still be given a meaning:
  - ▶ no first or last letter,
  - ▶ but left- and right-divisors:  $x \leq a$  means "x is a possible beginning of a".

▶ rule 
$$D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...),} \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...).} \end{cases}$$

- Useful???
- Example:  $M = B_3^+ = \langle a, b \mid aba = bab \rangle^+$ ;
  - ▶ start with the sequence (a, aba, b), better written a/aba/b ("multifraction")



▶ no hope of confluence...

 $a_{i+1}$ 

- Consider more general rewrite rules.
- Diagrammatic representation of elements of the monoid:  $a \mapsto \underbrace{a}_{a}$ , ...and of multifractions (= finite sequences):  $a_1/a_2/a_3/... \mapsto \underbrace{a_1}_{a_2} \underbrace{a_2}_{a_3} \cdots$
- Diagram for  $D_{i,x}$  (division by x at level i): we have  $\underline{a} \bullet D_{i,x} = \underline{b}$  (even i) for



► divide  $a_{i+1}$  by x, push x through  $a_i$  using lcm, multiply  $a_{i-1}$  by the reminder y.

• <u>Definition</u>: For *i* even,  $\underline{b} = \underline{a} \cdot R_{i,x}$  (" $\underline{b}$  obtained from  $\underline{a}$  by reducing x at level *i*") if  $b_{i-1} = a_{i-1}y$ ,  $xb_i = a_iy = \text{right-lcm}(x, a_i)$ ,  $xb_{i+1} = a_{i+1}$ , and  $b_k = a_k$  for  $k \neq i-1, i, i+1$ , and symmetrically for *i* odd.

- <u>a</u>  $D_{i,x}$  is defined if x divides both  $a_i$  and  $a_{i+1}$ ;
- ▶ <u>a</u>  $R_{i,x}$  is defined if x divides  $a_{i+1}$ , and x and  $a_i$  have a common multiple.



• In this way: a rewrite system  $\mathcal{R}(M)$  ("reduction") for every gcd-monoid M.

• <u>Theorem</u>: (i) If *M* is a noetherian gcd-monoid satisfying the 3-Ore condition, then *M* embeds in  $\mathcal{U}(M)$  and  $\mathcal{R}(M)$  is convergent: every element of  $\mathcal{U}(G)$  is represented by a unique  $\mathcal{R}(M)$ -irreducible multifraction.

(ii) If, moreover, M is strongly noetherian and has finitely many primitive elements, then the Word Problem for U(M) is decidable.

- ► *M* is noetherian: no infinite descending sequence for left- and right-divisibility.
- ▶ *M* is strongly noetherian: exists a pseudo-length function on *M*. ( $\Rightarrow$  noetherian)
- ► *M* satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one.  $(2-Ore \Rightarrow 3-Ore)$ 

- ► right-primitive elements: obtained from atoms repeatedly using the right-complement operation: (x, y) → x' s.t. yx' = right-lcm(x, y).
- <u>Proof</u>: (i) The rewrite system  $\mathcal{R}(M)$  is convergent:
  - ▶ noetherianity of *M* ensures termination;
  - ▶ the 3-Ore condition ensures confluence.
- (ii) Finitely many primitive elements provides an upper bound for possible

common multiples, ensuring that  $\Rightarrow$  is decidable.

- 1. The enveloping group of a monoid
  - Mal'cev theorem
  - Ore theorem
- 2. Reduction of multifractions
  - Free reduction
  - Division
  - Reduction
- 3. Artin-Tits monoids
  - The FC case
  - The general case

# • 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

- An Artin-Tits monoid: (S | R)<sup>+</sup> such that, for all s, t in S, there is at most one relation s... = t... in R and, if so, the relation has the form stst... = tsts..., both terms of same length.
- <u>Proposition</u> (Brieskorn-Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it of spherical type.
  adding s<sup>2</sup> = 1 for every s in S yields a <u>finite</u> Coxeter group
  ▶ "Garside theory"
- Proposition: An Artin-Tits monoid satisfies the 3-Ore condition iff it of FC ("flag complex") type.
  if ∀s, t ∈ S' ⊆ S ∃ s... = t... in R, then ⟨S'⟩ is spherical
  a new (?) normal form for AT-monoids of FC type
   (L. Paris) connection with the Niblo-Reeves action on a CAT(0)-complex?

- Good news: Every AT-monoid satisfies the assumptions:
  - strongly noetherian (relations preserve the length of words);
  - ▶ finitely many primitive elements (D.-Dyer-Hohlweg, 2015).
- Bad news: Every AT-monoid is not of FC-type...
- Example: type  $A_2$ :  $(a, b, c \mid aba = bab, bcb = cbc, cac = aca)^+$ 
  - ▶ the elements a, b, c pairwise admit common multiples, but no global multiple
  - ▶ the rewrite system  $\mathcal{R}(M)$  is <u>not</u> confluent:



▶ ???



▶ Equivalently: conjunction of  $\underline{a} \Rightarrow^* \underline{1}$  and  $\underline{a} \Rightarrow^* \underline{b}$  implies  $\underline{b} \Rightarrow^* \underline{1}$ :

• Lemma: If  $\mathcal{R}(M)$  is convergent, then it is near-convergent.

• <u>Proposition</u>: If M is a strongly noetherian gcd-monoid with finitely many primitive elements and  $\mathcal{R}(M)$  is near-convergent, the Word Problem for  $\mathcal{U}(M)$  is decidable.

• <u>Conjecture</u>: For <u>every</u> Artin-Tits monoid M, the system  $\mathcal{R}(M)$  is near-convergent.

- ▶ Would imply the decidability of the Word Problem for AT groups.
- ▶ Similarity with the Dehn algorithm: no introduction of pairs  $ss^{-1}$  or  $s^{-1}s$ .

• Example: type  $\widetilde{A}_2$ :  $\langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle^+$ 



▶ The quotient ca/ac/ba/ab/bc/cb represents 1 in the group...

... and, indeed, it reduces to 1:

- $\begin{array}{rcl} \operatorname{ac/ca/ba/ab/cb/bc} & \Rightarrow & \operatorname{ac/cac/b/1/cb/bc} & & \operatorname{via} R_{3,ab} \\ & \Rightarrow & \operatorname{ac/cac/bcb/1/1/bc} & & \operatorname{via} R_{4,cb} \\ & \Rightarrow & \operatorname{ac/cac/bcb/bc/1/1} & & \operatorname{via} R_{5,bc} \\ & \Rightarrow & 1/c/bcb/bc/1/1 & & \operatorname{via} R_{1,ac} \\ & \Rightarrow & \operatorname{bc/1/1/bc/1/1} & & \operatorname{via} R_{2,cbc} \\ & \Rightarrow & \operatorname{bc/bc/1/1/1/1} & & \operatorname{via} R_{3,bc} \\ & \Rightarrow & 1/1/1/1/1/1 & & \operatorname{via} R_{1,bc} \end{array}$
- Conjecture supported by massive computer experiments.
- Finite approximation  $(\mathcal{NC}_n)$ : Near-convergence for depth *n*;
  - ▶ Then  $(\mathcal{NC}_2)$  equivalent to  $M \subseteq \mathcal{U}(M)$ , which is true (L. Paris, 2001).

- 1. The enveloping group of a monoid
  - Mal'cev theorem
  - Ore theorem
- 2. Reduction of multifractions
  - Free reduction
  - Division
  - Reduction
- 3. Artin-Tits monoids
  - The FC case
  - The general case

# • 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

- <u>Definition</u> (F.Wehrung): For  $(P, \leq)$  a poset, the interval monoid of P is  $Int(P) := \langle \{[x, y] \mid x < y \in P\} \mid \{[x, y][y, z] = [x, z] \mid x < y < z \in P\} \rangle^+.$ the intervals of P
- Lemma: A monoid Int(P) embeds in its group; it is a gcd-monoid iff, for every  $x \in P$ ,  $P^{\geqslant x}$  is a  $\land$ -semilattice and  $P^{\leqslant x}$  is a  $\lor$ -semilattice.

• <u>Proposition</u> (D.-Wehrung) Assume that M is the interval monoid of a finite poset P, and M is a gcd-monoid. Define a simple circuit in P to be a finite sequence  $(x_0, ..., x_n)$  in P satisfying

- $x_i < x_{i-1}$  and  $x_i < x_{i+1}$  for i even,
- $x_0 = x_n$  and  $x_i \neq x_j$  for  $1 \leq i < j \leq n$ .

Say that a circuit is reducible if ... (an effectively checkable combinatorial property).

- ▶ If every simple circuit of P is reducible, then  $\mathcal{R}(M)$  is near-convergent;
- ▶ If every length  $\leq n$  simple circuit of P is reducible, then M satisfies ( $\mathcal{NC}_n$ ).

• A checkable condition when P is finite:

a finite poset admits finitely many simple circuits.

• Is near-convergence weaker than convergence?

• <u>Proposition</u> (D.-Wehrung): There exists a noetherian gcd-monoid M such that  $\mathcal{R}(M)$  is near-convergent but not convergent.



 $M = \langle \mathtt{a}, \mathtt{a}', \mathtt{a}'', \mathtt{b}, \mathtt{b}', \mathtt{b}'', \mathtt{c}, \mathtt{c}', \mathtt{c}'' \mid \mathtt{a}\mathtt{b}' = \mathtt{b}\mathtt{a}'', \mathtt{b}\mathtt{c}' = \mathtt{c}\mathtt{b}'', \mathtt{c}\mathtt{a}' = \mathtt{a}\mathtt{c}'' \rangle^+$ 

 $\blacktriangleright \mathcal{R}(M)$  is not convergent because M does not satisfy the 3-Ore condition.

• Are the properties  $(\mathcal{NC}_n)$  stronger and stronger?

• <u>Proposition</u> (D.–Wehrung): For every even  $n \ge 4$ , there exists a noetherian gcdmonoid M satisfying  $(\mathcal{NC}_{n'})$  for n' < n but not  $(\mathcal{NC}_n)$ .

