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• A new approach to the Word Problem for Artin-Tits groups (and other groups),
◮ based on a rewrite system extending free reduction,
◮ reminiscent of the Dehn algorithm for hyperbolic groups,
◮ proved in particular cases, conjectured in the general case.



Plan:

• 1. The enveloping group of a monoid
- Mal’cev theorem
- Ore theorem

• 2. Reduction of multifractions
- Free reduction
- Division
- Reduction

• 3. Artin–Tits monoids
- The FC case
- The general case

• 4. Interval monoids (joint with F. Wehrung)
- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples
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The enveloping group of a monoid

• Proposition: For every monoid M, there exists a unique group U(M) and a
morphism φ : M → U(M) s.t. every morphism from M to a group factors through φ.

If M = 〈S | R〉+, then U(M) = 〈S | R〉.

• If M is not cancellative, φ is not injective: ab = ac ⇒ φ(ab) = φ(ac)⇒ φ(b) = φ(c).

• Even if M is cancellative, φ need not be injective:

for M = 〈a, b, c, d, a′, b′, c′, d′ | ac = bd, ac′ = bd
′, a′c = b

′
d〉+,

φ(a′c′) = φ(a′c)φ(ac)−1φ(ac′) = φ(b′d)φ(bd)−1φ(bd′) = φ(b′d′).

• Theorem (Mal’cev, 1937): There exists an explicit infinite list of conditions C1,C2, ...
such that M embeds in U(M) iff M is cancellative and satisfies C1,C2, ....

(C1): ∀a, b, c, d, a′, b′, c′, d ′ ((ac = bd and ac′ = bd ′and a′c = b′d)⇒ a′c′ = b′d ′).



Ore’s theorem

• An easy case:

• Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M
embeds in U(M) and every element of U(M) is represented as ab−1 with a,b in M.

◮ “ U(M) is a group of (right) fractions for M ”

• Definition: a left-divides b, or b is a right-multiple of a, if ∃x (ax = b). ← a 6 b

◮ 2-Ore condition: Any two elements admits a common right-multiple.

• Examples: N vs. Z, Z+ vs. Q+, K [X ] vs. K(X ), etc.



Gcd-monoids

• Whenever 1 is the only invertible element, 6 (left-divisibility) is a partial ordering;
left-gcd:= greatest lower bound, right-lcm:= least upper bound (when they exist).

• Definition: A gcd-monoid is a cancellative monoid, in which 1 is the only invertible
element and any two elements admit a left- and a right-gcd.

• Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds
in U(M) and every element of U(M) is represented by a unique irreducible fraction.

↑
ab−1 with a, b ∈ M and right-gcd(a, b) = 1

• Examples:
◮ M = B+

n , braid monoid on n strands, with U(M) = Bn.
◮ more generally: all Garside monoids and the associated Garside groups.
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Free reduction

• When the 2-Ore condition fails (no common multiples), no fractional expression.

• Example: M = F+, a free monoid; then M embeds in U(M), a free group;

◮ No fractional expression for the elements of U(M),

◮ But: unique expression a1a
−1
2 a3a

−1
4 ··· with a1, a2, ... in M and

for i odd: ai and ai+1 do not finish with the same letter,
for i even: ai and ai+1 do not begin with the same letter.

◮ a “freely reduced word”

• Proof: (easy) Introduce rewrite rules on finite sequences of positive words:

◮ rule Di,x :=

{
for i odd, delete x at the end of ai and ai+1 (if possible...),

for i even, delete x at the beginning of ai and ai+1 (if possible...).

◮ Then the system of all rules Di,x is (locally) confluent:

a

b c

Di,x Dj,y

∃d

◮ Every sequence a rewrites into a unique irreducible sequence (“convergence”). �



Division

• When M is not free, the rewrite rule Di,x can still be given a meaning:
◮ no first or last letter,
◮ but left- and right-divisors: x 6 a means “x is a possible beginning of a”.

◮ rule Di,x :=

{
for i odd, right-divide ai and ai+1 by x (if possible...),

for i even, left-divide ai and ai+1 by x (if possible...).

• Useful???

• Example: M = B+
3 = 〈a, b | aba = bab〉+;

◮ start with the sequence (a, aba, b), better written a/aba/b (“multifraction”)

a/aba/ba/aba/b

1/ab/b

D1,a

a/bab/ba/bab/b

a/ab/1

D2,b

∃d

◮ no hope of confluence...



Reduction

• Consider more general rewrite rules.

• Diagrammatic representation of elements of the monoid: a 7→ a ,

...and of multifractions (= finite sequences): a1/a2/a3/... 7→
a1 a2 a3 ...

• Diagram for Di,x (division by x at level i): we have a • Di,x = b (even i) for

... ai

bi
bi+1

ai+1
x

...
ai

bi
bi+1

ai+1x

...

• Relax the condition “x divides ai”: declare a • R i,x = b (even i) for

... ai
ai+1

x

bi+1
bi

y
bi−1

...
ai

bi
bi+1

ai+1x

y
bi−1

...

◮ divide ai+1 by x, push x through ai using lcm, multiply ai−1 by the reminder y .



Reduction (cont’d)

• Definition: For i even, b = a • Ri,x (“b obtained from a by reducing x at level i”) if

bi−1 = ai−1y , xbi = aiy = right-lcm(x , ai ), xbi+1 = ai+1,

and bk = ak for k 6= i − 1, i , i + 1, and symmetrically for i odd.

◮ a • D i,x is defined if x divides both ai and ai+1;
◮ a • R i,x is defined if x divides ai+1, and x and ai have a common multiple.

• Example: M = B+
3 with 1/ab/b.

1

ab

b

b and ab admit a common multiple
ab

a

◮ we can push b through ab:
◮ a/ab/1 = 1/ab/b • R2,b,

and now a/aba/b

1/ab/b

D1,a

a/ab/1

D2,b

R2,b
◮ possible confluence (?)

• In this way: a rewrite system R(M) (“reduction”) for every gcd-monoid M.



The 3-Ore case

• Theorem: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M
embeds in U(M) and R(M) is convergent: every element of U(G) is represented by a
unique R(M)-irreducible multifraction.

(ii) If, moreover, M is strongly noetherian and has finitely many primitive elements,
then the Word Problem for U(M) is decidable.

◮ M is noetherian: no infinite descending sequence for left- and right-divisibility.
◮ M is strongly noetherian: exists a pseudo-length function on M. (⇒ noetherian)
◮ M satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. (2-Ore ⇒ 3-Ore)
◮ right-primitive elements: obtained from atoms repeatedly using

the right-complement operation: (x , y) 7→ x ′ s.t. yx ′ = right-lcm(x , y).

• Proof: (i) The rewrite system R(M) is convergent:
◮ noetherianity of M ensures termination;
◮ the 3-Ore condition ensures confluence.

(ii) Finitely many primitive elements provides an upper bound for possible
common multiples, ensuring that ⇒ is decidable. �



Plan:

• 1. The enveloping group of a monoid
- Mal’cev theorem
- Ore theorem

• 2. Reduction of multifractions
- Free reduction
- Division
- Reduction

• 3. Artin–Tits monoids
- The FC case
- The general case

• 4. Interval monoids (joint with F. Wehrung)
- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples



Artin–Tits monoids

• An Artin-Tits monoid: 〈S | R〉+ such that, for all s, t in S,
there is at most one relation s... = t... in R and, if so, the relation has the form

stst... = tsts..., both terms of same length.

• Proposition (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore
condition iff it of spherical type.

↑
adding s2 = 1 for every s in S yields a finite Coxeter group

◮ “Garside theory”

• Proposition: An Artin-Tits monoid satisfies the 3-Ore
condition iff it of FC (“flag complex”) type.

↑
if ∀s, t ∈ S ′ ⊆ S ∃ s... = t... in R, then 〈S ′〉 is spherical

◮ a new (?) normal form for AT-monoids of FC type
↑

(L. Paris) connection with the Niblo–Reeves action on a CAT(0)-complex?



General Artin–Tits monoids

• Good news: Every AT-monoid satisfies the assumptions:

◮ strongly noetherian (relations preserve the length of words);

◮ finitely many primitive elements (D.-Dyer-Hohlweg, 2015).

• Bad news: Every AT-monoid is not of FC-type...

• Example: type Ã2: 〈a, b, c | aba = bab, bcb = cbc, cac = aca〉+

◮ the elements a, b, c pairwise admit common multiples, but no global multiple

◮ the rewrite system R(M) is not confluent:

1/c/aba

ac/ca/ba

R2,a

bc/cb/ab

R2,b

◮ ???



The Main Conjecture

• Definition: The system R(M) is near-convergent if

a represents 1 in U(M) iff a⇒∗ 1.

◮ Equivalently: conjunction of a⇒∗ 1 and a⇒∗ b implies b ⇒∗ 1:

a

1

∗

b

∗

∃d
∗

∗

• Lemma: If R(M) is convergent, then it is near-convergent.

• Proposition: If M is a strongly noetherian gcd-monoid with finitely many primitive
elements and R(M) is near-convergent, the Word Problem for U(M) is decidable.

• Conjecture: For every Artin-Tits monoid M, the system R(M) is near-convergent.

◮ Would imply the decidability of the Word Problem for AT groups.
◮ Similarity with the Dehn algorithm: no introduction of pairs ss−1 or s−1s.



The Main Conjecture (cont’d)

• Example: type Ã2: 〈a, b, c | aba = bab, bcb = cbc, cac = aca〉+

1/c/aba

ca/ac/ba

R2,a

cb/bc/ab

R2,b

◮ The quotient ca/ac/ba/ab/bc/cb represents 1 in the group...
... and, indeed, it reduces to 1:

ac/ca/ba/ab/cb/bc ⇒ ac/cac/b/1/cb/bc via R3,ab

⇒ ac/cac/bcb/1/1/bc via R4,cb

⇒ ac/cac/bcb/bc/1/1 via R5,bc

⇒ 1/c/bcb/bc/1/1 via R1,ac

⇒ bc/1/1/bc/1/1 via R2,cbc

⇒ bc/bc/1/1/1/1 via R3,bc

⇒ 1/1/1/1/1/1 via R1,bc

• Conjecture supported by massive computer experiments.

• Finite approximation (NCn) : Near-convergence for depth n;
◮ Then (NC2) equivalent to M ⊂→ U(M), which is true (L. Paris, 2001).
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The interval monoid

• Definition (F.Wehrung): For (P,6) a poset, the interval monoid of P is

Int(P) := 〈{[x , y ] | x < y ∈ P} | {[x , y ][y , z ] = [x , z ] | x < y < z ∈ P}〉+.
↑

the intervals of P

• Lemma: A monoid Int(P) embeds in its group; it is a gcd-monoid iff, for every x ∈ P,

P>x is a ∧-semilattice and P6x is a ∨-semilattice.

• Proposition (D.–Wehrung) Assume that M is the interval monoid of a finite
poset P, and M is a gcd-monoid. Define a simple circuit in P to be a finite sequence
(x0, ..., xn) in P satisfying

◮ xi < xi−1 and xi < xi+1 for i even,
◮ x0 = xn and xi 6= xj for 1 6 i < j 6 n.

Say that a circuit is reducible if ... (an effectively checkable combinatorial property).
◮ If every simple circuit of P is reducible, then R(M) is near-convergent;
◮ If every length 6n simple circuit of P is reducible, then M satisfies (NCn).

• A checkable condition when P is finite:
a finite poset admits finitely many simple circuits.



Examples 1

• Is near-convergence weaker than convergence?

• Proposition (D.-Wehrung): There exists a noetherian gcd-monoid M such that R(M)
is near-convergent but not convergent.

• Proof: Read the presentation of M on:

0

1

2

3

4

5

6

0

1

2

3

4

5

6
a

b

c

b
′

a
′′

c
′

b
′′

a
′

c
′′

M = 〈a, a′, a′′, b, b′, b′′, c, c′, c′′ | ab′ = ba
′′, bc′ = cb

′′, ca′ = ac
′′〉+

◮ R(M) is not convergent because M does not satisfy the 3-Ore condition. �



Examples 2

• Are the properties (NCn) stronger and stronger?

• Proposition (D.–Wehrung): For every even n > 4, there exists a noetherian gcd-
monoid M satisfying (NCn′ ) for n′ < n but not (NCn).

• Proof: Read the presentation on (here n = 6):

0

1 2 3 4
56

7 8 9 101112

13 14 15 161718

12

3

4

5

6

7

8

9 10

11

12

13

14 15 16

17

18

0

◮ a necklace of n connected diamonds,
plus a central cross connecting each other extremal vertex. �

• The monoids Int(P) are (very) far from Artin-Tits monoids
◮ A proof of the conjecture will require specific “non-Garside” arguments.


