

Multifraction reduction and the Word Problem for Artin-Tits groups

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

AAA92, Prague, May 2016

(ロ) (日) (모) (모) (모) 모 | ⊙Q (◇

• A new approach to the Word Problem for Artin-Tits groups (and other groups),

- ► based on a rewrite system extending free reduction,
- \triangleright reminiscent of the Dehn algorithm for hyperbolic groups,
- ▶ proved in particular cases, conjectured in the general case.

• 1. The enveloping group of a monoid

- Mal'cev theorem
- Ore theorem

• 2. Reduction of multifractions

- Free reduction
- Division
- Reduction

• 3 Artin–Tits monoids

- The FC case
- The general case

• 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

• 1. The enveloping group of a monoid

- Mal'cev theorem
- Ore theorem
- 2. Reduction of multifractions
	- Free reduction
	- Division
	- Reduction
- 3. Artin–Tits monoids
	- The FC case
	- The general case

• 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

• Proposition: For every monoid M, there exists a unique group $\mathcal{U}(M)$ and a morphism $\phi : M \to \mathcal{U}(M)$ s.t. every morphism from M to a group factors through ϕ . If $M = \langle S | R \rangle^+$, then $\mathcal{U}(M) = \langle S | R \rangle$.

• If M is not cancellative, ϕ is not injective: $ab = ac \Rightarrow \phi(ab) = \phi(ac) \Rightarrow \phi(b) = \phi(c)$.

• Even if M is cancellative, ϕ need not be injective: for $M = \langle a, b, c, d, a', b', c', d' | ac = bd, ac' = bd', a'c = b'd \rangle^+,$ $\phi(\mathsf{a}'\mathsf{c}') = \phi(\mathsf{a}'\mathsf{c})\phi(\mathsf{a}\mathsf{c})^{-1}\phi(\mathsf{a}\mathsf{c}') = \phi(\mathsf{b}'\mathsf{d})\phi(\mathsf{b}\mathsf{d})^{-1}\phi(\mathsf{b}\mathsf{d}') = \phi(\mathsf{b}'\mathsf{d}').$

• Theorem (Mal'cev, 1937): There exists an explicit infinite list of conditions $C_1, C_2, ...$ such that M embeds in $U(M)$ iff M is cancellative and satisfies $C_1, C_2, ...$

 (C_1) : $\forall a, b, c, d, a', b', c', d'$ (($ac = bd$ and $ac' = bd'$ and $a'c = b'd'$) $\Rightarrow a'c' = b'd'$).

• An easy case:

• Theorem (Ore, 1933): If M is cancellative and satisfies the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented as ab⁻¹ with a, b in M.

 \blacktriangleright " $\mathcal{U}(M)$ is a group of (right) fractions for M "

• Definition: a left-divides b, or b is a right-multiple of a, if $\exists x (ax = b)$. $\leftarrow a \leq b$ \triangleright 2-Ore condition: Any two elements admits a common right-multiple.

 \bullet <u>Examples</u>: $\mathbb N$ *vs.* $\mathbb Z, \mathbb Z^+$ *vs.* $\mathbb Q^+,$ $\mathcal{K}[X]$ *vs.* $\mathcal{K}(X)$, etc.

• Whenever 1 is the only invertible element, \leq (left-divisibility) is a partial ordering; $left-gcd :=$ greatest lower bound, right-lcm: least upper bound (when they exist).

• Definition: A gcd-monoid is a cancellative monoid, in which 1 is the only invertible element and any two elements admit a left- and a right-gcd.

• Corollary: If M is a gcd-monoid satisfying the 2-Ore condition, then M embeds in $U(M)$ and every element of $U(M)$ is represented by a unique irreducible fraction.

 ab^{-1} with $a, b \in M$ and right-gcd $(a, b) = 1$

- Examples:
	- $\blacktriangleright M = B_n^+$, braid monoid on *n* strands, with $\mathcal{U}(M) = B_n$.
	- ► more generally: all Garside monoids and the associated Garside groups.

• 1. The enveloping group of a monoid

- Mal'cev theorem
- Ore theorem

• 2. Reduction of multifractions

- Free reduction
- Division
- Reduction

• 3. Artin–Tits monoids

- The FC case
- The general case

• 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

• When the 2-Ore condition fails (no common multiples), no fractional expression.

 \bullet Example: $M = F^+$, a free monoid; then M embeds in $\mathcal{U}(M)$, a free group;

- \triangleright No fractional expression for the elements of $U(M)$,
- ► But: unique expression $a_1 a_2^{-1} a_3 a_4^{-1} \cdots$ with a_1, a_2, \ldots in M and for *i* odd: a_i and a_{i+1} do not finish with the same letter, for *i* even: a_i and a_{i+1} do not begin with the same letter.

▶ a "freely reduced word"

IN A REALLY BE AN ALL AND A

- Proof: (easy) Introduce rewrite rules on finite sequences of positive words:
	- rule $D_{i,x} := \begin{cases}$ for *i* odd, delete x at the end of a_i and a_{i+1} (if possible...), **if** noss **h** for *i* even delete x at the beginning of a_i and a_{i+1} (if possible...) for *i* even, delete x at the beginning of a_i and a_{i+1} (if possible...).
	- \blacktriangleright Then the system of all rules $D_{i,x}$ is (locally) confluent:

► Every sequence a rewrites into a unique irreducible sequence ("convergence"). \Box

- When M is not free, the rewrite rule $D_{i,x}$ can still be given a meaning:
	- ▶ no first or last letter,
	- but left- and right-divisors: $x \le a$ means "x is a possible beginning of a".

$$
\blacktriangleright \text{ rule } D_{i,x} := \begin{cases} \text{for } i \text{ odd, right-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...)}, \\ \text{for } i \text{ even, left-divide } a_i \text{ and } a_{i+1} \text{ by } x \text{ (if possible...)}.\end{cases}
$$

- Useful???
- <u>Example</u>: $M = B_3^+ = \langle a, b \mid aba = bab \rangle^+$;
	- \triangleright start with the sequence (a, aba, b), better written a/aba/b ("multifraction")

 \blacktriangleright no hope of confluence...

- Consider more general rewrite rules.
- Diagrammatic representation of elements of the monoid: $a \mapsto \frac{a}{a}$, ...and of multifractions (= finite sequences): $a_1/a_2/a_3/... \mapsto a_1 a_2/ a_3 ...$
- Diagram for $D_{i,x}$ (division by x at level *i*): we have $\underline{a} \cdot D_{i,x} = \underline{b}$ (even *i*) for

► divide a_{i+1} by x, push x through a_i using lcm, multiply a_{i-1} by the reminder y. KEL KAR KELKER E VAN

• Definition: For i even, $\underline{b} = \underline{a} \cdot R_{i,x}$ (" \underline{b} obtained from \underline{a} by reducing x at level i") if $b_{i-1} = a_{i-1}y$, $xb_i = a_iy = \text{right-lcm}(x, a_i)$, $xb_{i+1} = a_{i+1}$, and $b_k = a_k$ for $k \neq i - 1, i, i + 1$, and symmetrically for i odd.

 \triangleright a. $D_{i,x}$ is defined if x divides both a_i and a_{i+1} ; \triangleright a • $R_{i,x}$ is defined if x divides a_{i+1} , and x and a_i have a common multiple.

• In this way: a rewrite system $\mathcal{R}(M)$ ("reduction") for every gcd-monoid M.

• Theorem: (i) If M is a noetherian gcd-monoid satisfying the 3-Ore condition, then M embeds in $U(M)$ and $\mathcal{R}(M)$ is convergent: every element of $U(G)$ is represented by a unique $\mathcal{R}(M)$ -irreducible multifraction.

(ii) If, moreover, M is strongly noetherian and has finitely many primitive elements, then the Word Problem for $U(M)$ is decidable.

- \blacktriangleright M is noetherian: no infinite descending sequence for left- and right-divisibility.
- ► M is strongly noetherian: exists a pseudo-length function on M. (\Rightarrow noetherian)
- \blacktriangleright *M* satisfies the 3-Ore condition: three elements that pairwise admit

a common multiple admit a global one. $(2\textrm{-}Ore \Rightarrow 3\textrm{-}Ore)$

- \triangleright right-primitive elements: obtained from atoms repeatedly using the right-complement operation: $(x, y) \mapsto x'$ s.t. $yx' =$ right-lcm (x, y) .
- Proof: (i) The rewrite system $R(M)$ is convergent:
	- \triangleright noetherianity of M ensures termination;
	- \triangleright the 3-Ore condition ensures confluence.
- (ii) Finitely many primitive elements provides an upper bound for possible common multiples, ensuring that \Rightarrow is decidable.

- 1. The enveloping group of a monoid
	- Mal'cev theorem
	- Ore theorem
- 2. Reduction of multifractions
	- Free reduction
	- Division
	- Reduction

• 3. Artin–Tits monoids

- The FC case
- The general case

• 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

- An Artin-Tits monoid: $\langle S | R \rangle^+$ such that, for all s, t in S, there is at most one relation $s... = t...$ in R and, if so, the relation has the form $stst... = tsts...$, both terms of same length.
- Proposition (Brieskorn–Saito, 1971): An Artin-Tits monoid satisfies the 2-Ore condition iff it of spherical type. ↑ adding $s^2 = 1$ for every s in S yields a <u>finite</u> Coxeter group ► "Garside theory"
- Proposition: An Artin-Tits monoid satisfies the 3-Ore **condition iff it of FC** ("flag complex") **type.**
 \uparrow if $\forall s,t \in S' \subseteq S \exists s... = t...$ in R , then $\langle S' \rangle$ is spherical \triangleright a new (?) normal form for AT-monoids of FC type ↑ (L. Paris) connection with the Niblo–Reeves action on a CAT(0)-complex?

- Good news: Every AT-monoid satisfies the assumptions:
	- \triangleright strongly noetherian (relations preserve the length of words);
	- \triangleright finitely many primitive elements (D.-Dyer-Hohlweg, 2015).
- Bad news: Every AT-monoid is not of FC-type...
- <u>Example</u>: type A_2 : $\langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle^+$
	- \triangleright the elements a, b, c pairwise admit common multiples, but no global multiple
	- \blacktriangleright the rewrite system $\mathcal{R}(M)$ is <u>not</u> confluent:

 $\sqrt{?}$???

 \bullet Proposition: If M is a strongly noetherian gcd-monoid with finitely many primitive elements and $\mathcal{R}(M)$ is near-convergent, the Word Problem for $\mathcal{U}(M)$ is decidable.

• Conjecture: For every Artin-Tits monoid M, the system $\mathcal{R}(M)$ is near-convergent.

- ► Would imply the decidability of the Word Problem for AT groups.
- ► Similarity with the Dehn algorithm: no introduction of pairs ss^{-1} or $s^{-1}s$.

• <u>Example</u>: type A_2 : $\langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle^+$

 \blacktriangleright The quotient ca/ac/ba/ab/bc/cb represents 1 in the group...

... and, indeed, it reduces to 1:

- $ac/ca/ba/ab/cb/bc$ \Rightarrow $ac/cac/b/1/cb/bc$ via $R_{3,ab}$
 \Rightarrow $ac/cac/bcb/1/1/bc$ via $R_{4,cb}$ ⇒ ac/cac/bcb/1/1/bc via $R_{4,\text{cb}}$
⇒ ac/cac/bcb/bc/1/1 via $R_{5,\text{bc}}$ ⇒ ac/cac/bcb/bc/1/1 via $R_{5, bc}$
⇒ 1/c/bcb/bc/1/1 via $R_{1, ac}$ ⇒ $1/c/bcb/bc/1/1$ via $R_{1,ac}$
⇒ $bc/1/1/bc/1/1$ via $R_{2,cbc}$ ⇒ bc/1/1/bc/1/1 via $R_{2,\text{cb}}$
⇒ bc/bc/1/1/1/1 via $R_{3,\text{bc}}$ ⇒ bc/bc/1/1/1/1 via $R_{3,\text{bc}}$

⇒ 1/1/1/1/1/1 \Rightarrow 1/1/1/1/1/1
- Conjecture supported by massive computer experiments.
- Finite approximation (\mathcal{NC}_n) : Near-convergence for depth *n*;
	- ► Then (\mathcal{NC}_2) equivalent to $M \subseteq \mathcal{U}(M)$, which is true (L. Paris, 2001).

- 1. The enveloping group of a monoid
	- Mal'cev theorem
	- Ore theorem
- 2. Reduction of multifractions
	- Free reduction
	- Division
	- Reduction
- 3. Artin–Tits monoids
	- The FC case
	- The general case

• 4. Interval monoids (joint with F. Wehrung)

- The interval monoid of a poset
- A criterion for near-convergence
- Examples and counter-examples

- Definition (F. Wehrung): For (P, \leqslant) a poset, the interval monoid of P is Int(P) := $\langle \{ [x, y] | x < y \in P \} | \{ [x, y] [y, z] = [x, z] | x < y < z \in P \} \rangle^+$. the intervals of P
- Lemma: A monoid Int(P) embeds in its group; it is a gcd-monoid iff, for every $x \in P$, $P^{\geqslant x}$ is a ∧-semilattice and $P^{\leqslant x}$ is a ∨-semilattice.

• Proposition (D.–Wehrung) Assume that M is the interval monoid of a finite poset P , and M is a gcd-monoid. Define a simple circuit in P to be a finite sequence $(x_0, ..., x_n)$ in P satisfying

- ► $x_i < x_{i-1}$ and $x_i < x_{i+1}$ for i even,
- \blacktriangleright $x_0 = x_n$ and $x_i \neq x_j$ for $1 \leqslant i < j \leqslant n$.

Say that a circuit is reducible if ... (an effectively checkable combinatorial property).

- \blacktriangleright If every simple circuit of P is reducible, then $\mathcal{R}(M)$ is near-convergent;
- If every length $\leq n$ simple circuit of P is reducible, then M satisfies (\mathcal{NC}_n) .

 \bullet A checkable condition when P is finite:

a finite poset admits finitely many simple circuits.

• Is near-convergence weaker than convergence?

• Proposition (D.-Wehrung): There exists a noetherian gcd-monoid M such that $\mathcal{R}(M)$ is near-convergent but not convergent.

 $M = \langle a, a', a'', b, b', b'', c, c', c'' \mid ab' = ba'', bc' = cb'', ca' = ac'' \rangle^+$

 \blacktriangleright $\mathcal{R}(M)$ is not convergent because M does not satisfy the 3-Ore condition.

• Are the properties (NC_n) stronger and stronger?

• Proposition (D.–Wehrung): For every even $n \geq 4$, there exists a noetherian gcdmonoid M satisfying $(\mathcal{NC}_n)'$ for $n' < n$ but not (\mathcal{NC}_n) .

