Varieties of Rickart rings

Insa Cremer

University of Latvia

May 28, 2016

Outline

• Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.

- Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.
- Speed and Evans proved that commutative Rickart rings form a variety.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.
- Speed and Evans proved that commutative Rickart rings form a variety.

・ロト ・個ト ・ヨト ・ヨト 三日

Can this result be generalized to a wider class of Rickart rings?

- Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.
- Speed and Evans proved that commutative Rickart rings form a variety.

・ロト ・個ト ・ヨト ・ヨト 三日

Can this result be generalized to a wider class of Rickart rings?

Reduced Rickart rings

- Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.
- Speed and Evans proved that commutative Rickart rings form a variety.

- 日本 - (理本 - (日本 - (日本 - 日本

Can this result be generalized to a wider class of Rickart rings?

- Reduced Rickart rings
- Rickart rings

- Rickart rings are an algebraic generalization of rings of bounded operators on a Hilbert space.
- Speed and Evans proved that commutative Rickart rings form a variety.

Can this result be generalized to a wider class of Rickart rings?

- Reduced Rickart rings
- Rickart rings
- One-sided Rickart rings

Rickart rings

Definition

A ring R is called Rickart ring if for every $a \in R$ there exist idempotents $e, f \in R$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Rickart rings

Definition

A ring R is called Rickart ring if for every $a \in R$ there exist idempotents $e, f \in R$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$ax = 0 \iff ex = x$$
,

Rickart rings

Definition

A ring R is called Rickart ring if for every $a \in R$ there exist idempotents $e, f \in R$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$ax = 0 \iff ex = x$$
,

•
$$xa = 0 \iff xf = x$$
.

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

• a' is idempotent,

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- a' is idempotent,
- $ax = 0 \iff a'x = x$ for all $x \in R$,

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• a' is idempotent,

•
$$ax = 0 \iff a'x = x$$
 for all $x \in R$,

• a'' = 1 - a'.

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

- a' is idempotent,
- $ax = 0 \iff a'x = x$ for all $x \in R$,

•
$$a'' = 1 - a'$$
.

Definition ([2])

A unary operation ' on a ring R is called left focal operation if for every $a \in R$

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

- a' is idempotent,
- $ax = 0 \iff a'x = x$ for all $x \in R$,

•
$$a'' = 1 - a'$$
.

Definition ([2])

A unary operation ' on a ring R is called left focal operation if for every $a \in R$

• a' is idempotent,

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

• a' is idempotent,

•
$$ax = 0 \iff a'x = x$$
 for all $x \in R$,

•
$$a'' = 1 - a'$$
.

Definition ([2])

A unary operation ' on a ring R is called left focal operation if for every $a \in R$

• a` is idempotent,

•
$$xa = 0 \iff xa' = x$$
 for all $x \in R$,

Definition ([2])

A unary operation ' on a ring R is called right focal operation if for every $a \in R$

- a' is idempotent,
- $ax = 0 \iff a'x = x$ for all $x \in R$,

•
$$a'' = 1 - a'$$
.

Definition ([2])

A unary operation ' on a ring R is called left focal operation if for every $a \in R$

a' is idempotent,

•
$$xa = 0 \iff xa' = x$$
 for all $x \in R$,

•
$$a^{"} = 1 - a^{'}$$
.

Proposition ([2])

A ring R is a Rickart ring if and only if it admits right and left focal operations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition ([2])

A ring R is a Rickart ring if and only if it admits right and left focal operations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A focal (Rickart) ring is an algebra $\langle R, +, \cdot, -, ', ', 0, 1 \rangle$, where

Proposition ([2])

A ring R is a Rickart ring if and only if it admits right and left focal operations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A focal (Rickart) ring is an algebra $\langle R, +, \cdot, -, ', \cdot, 0, 1 \rangle$, where

• $\langle R,+,\cdot,-,0,1
angle$ is a Rickart ring,

Proposition ([2])

A ring R is a Rickart ring if and only if it admits right and left focal operations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A focal (Rickart) ring is an algebra $\langle R, +, \cdot, -, ', \cdot, 0, 1
angle$, where

- $\langle R,+,\cdot,-,0,1
 angle$ is a Rickart ring,
- ' is its right focal operation,

Proposition ([2])

A ring R is a Rickart ring if and only if it admits right and left focal operations.

Definition

A focal (Rickart) ring is an algebra $\langle R,+,\cdot,-,',\cdot,0,1
angle$, where

- $\langle R,+,\cdot,-,0,1
 angle$ is a Rickart ring,
- ' is its right focal operation,
- ' is its left focal operation.

Theorem (Speed, Evans)

A commutative ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it admits a unary operation ' with

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Theorem (Speed, Evans)

A commutative ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it admits a unary operation ' with

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• aa' = 0,

Theorem (Speed, Evans)

A commutative ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it admits a unary operation ' with

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- aa' = 0,
- aa'' = a,

Theorem (Speed, Evans)

A commutative ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it admits a unary operation ' with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *aa*′ = 0,
- aa'' = a,
- (ab)' = a' + b' a'b'.

Theorem (Speed, Evans)

A commutative ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it admits a unary operation ' with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *aa*′ = 0,
- aa'' = a,

•
$$(ab)' = a' + b' - a'b'$$
.

Corollary (Speed, Evans)

The class of commutative focal rings is a variety.

Reduced focal Rickart rings

Definition

A ring is called reduced if it has no non-zero nilpotent elements.

Reduced focal Rickart rings

Definition

A ring is called reduced if it has no non-zero nilpotent elements.

Proposition

In a reduced ring

$$ab=0\iff ba=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: Associate rings

Definition

Let A be a subdirect sum of rings R_i without divisors of zero. The ringA is called associate ring if for every $a \in A$ the element a^0 defined by

$$a_i^0\coloneqq egin{cases} 0, & ext{if} \; a_i=0\ 1, & ext{else} \end{cases}$$

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

belongs to A.

Example: Associate rings

Definition

Let A be a subdirect sum of rings R_i without divisors of zero. The ringA is called associate ring if for every $a \in A$ the element a^0 defined by

$$a_i^0\coloneqq egin{cases} 0, & ext{if} \; a_i=0\ 1, & ext{else} \end{cases}$$

belongs to A.

Proposition

Every associate ring is a reduced Rickart ring with focal operation defined by

$$a' \coloneqq 1 - a^0.$$

One-sided Rickart rings

Theorem

A unitary ring $\langle R, +, \cdot, 0, 1 \rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

One-sided Rickart rings

Theorem

A unitary ring $\langle R,+,\cdot,0,1\rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

<ロ> (四) (四) (三) (三) (三) (三)

•
$$aa' = 0$$
,

One-sided Rickart rings

Theorem

A unitary ring $\langle R,+,\cdot,0,1\rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

•
$$aa' = 0$$
,

•
$$a'' = 1 - a'$$
,

One-sided Rickart rings

Theorem

A unitary ring $\langle R, +, \cdot, 0, 1 \rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- aa' = 0,
- a'' = 1 a',
- (a''b)'' = (a''b)''(ab)''.

One-sided Rickart rings

Theorem

A unitary ring $\langle R,+,\cdot,0,1\rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

・ロト ・個ト ・ヨト ・ヨト

3

•
$$aa' = 0$$
,

•
$$a'' = 1 - a'$$
,

•
$$(a''b)'' = (a''b)''(ab)''.$$

Corollary

The class of unitary right-focal Rickart rings is a variety.

One-sided Rickart rings

Theorem

A unitary ring $\langle R,+,\cdot,0,1\rangle$ is a right Rickart ring if and only if it admits a unary operation ' such that

ション ふゆ く 山 マ チャット しょうくしゃ

• *aa'* = 0,

•
$$a'' = 1 - a'$$
,

•
$$(a''b)'' = (a''b)''(ab)''.$$

Corollary

The class of unitary right-focal Rickart rings is a variety.

• The same holds for unitary left-focal rings.

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• a unary oparation ' with

aa' = 0,

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$aa' = 0,$$

 $a'' = 1 - a$

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)'',$

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• a unary oparation ' with

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)''$

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

• a unary oparation ' with

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)''$

$$a^{\prime}a=0,$$

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• a unary oparation ' with

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)''$

$$a^{\circ}a = 0,$$

 $a^{\circ\circ} = 1 - a^{\circ}$

Theorem

A ring $\langle R,+,\cdot,0\rangle$ is a Rickart ring if and only if it is unitary and it admits

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• a unary oparation ' with

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)''$

$$a'a = 0,$$

 $a'' = 1 - a',$
 $(ab'')'' = (ab)''(ab'')''.$

Theorem

A ring $\langle R,+,\cdot,0
angle$ is a Rickart ring if and only if it is unitary and it admits

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• a unary oparation ' with

$$aa' = 0,$$

 $a'' = 1 - a',$
 $(a''b)'' = (a''b)'' (ab)''$

• a unary oparation' with

$$a^{\prime}a = 0,$$

 $a^{\prime\prime} = 1 - a^{\prime},$
 $(ab^{\prime\prime})^{\prime\prime} = (ab)^{\prime\prime} (ab^{\prime\prime})^{\prime\prime}.$

Corollary

The class of focal Rickart rings is a variety.

Reduced Rickart rings

Theorem

A right focal Rickart ring $\langle R,+,\cdot,-,',0,1\rangle$ is reduced if and only if for all $a\in R$

$$a'a = aa'$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Reduced Rickart rings

Theorem

A right focal Rickart ring $\langle R,+,\cdot,-,'\,,0,1\rangle$ is reduced if and only if for all a \in R

$$a'a = aa'$$
.

<ロ> (四) (四) (三) (三) (三) (三)

Corollary

The class of reduced focal Rickart rings is a variety.

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a reduced Rickart ring if and only if it is unitary and admits a unary operation ' with

・ロト ・ 日本 ・ 日本 ・ 日本

э

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a reduced Rickart ring if and only if it is unitary and admits a unary operation ' with

・ロット 全部 マート・ キョン

э

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a reduced Rickart ring if and only if it is unitary and admits a unary operation ' with

・ロト ・個ト ・ヨト ・ヨト

3

•
$$a'' = 1 - a'$$
,

Theorem

A ring $\langle R, +, \cdot, 0 \rangle$ is a reduced Rickart ring if and only if it is unitary and admits a unary operation ' with

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- aa' = 0 = a'a,
- a'' = 1 a',
- (ab)' = a' + b' a'b'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let $\mathcal A$ be an algebra.

Definition

Let $\mathcal A$ be an algebra.

• \mathcal{A} is called congruence permutable if for all congruences θ, σ holds $\theta \circ \sigma = \sigma \circ \theta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition

Let $\mathcal A$ be an algebra.

- \mathcal{A} is called congruence permutable if for all congruences θ, σ holds $\theta \circ \sigma = \sigma \circ \theta$.
- \mathcal{A} is called regular ir for all congruences θ, σ and for all $a \in \mathcal{A}$ from $[a]_{\sigma} = [a]_{\theta}$ follows $\sigma = \theta$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

Let ${\mathcal A}$ be an algebra.

- \mathcal{A} is called congruence permutable if for all congruences θ, σ holds $\theta \circ \sigma = \sigma \circ \theta$.
- \mathcal{A} is called regular ir for all congruences θ, σ and for all $a \in \mathcal{A}$ from $[a]_{\sigma} = [a]_{\theta}$ follows $\sigma = \theta$.

ション ふゆ く 山 マ チャット しょうくしゃ

Proposition

The varieties mentioned in this talk are permutable and regular.

Open questions

• Is every reduced Rickart ring isomorphic to an associate ring?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Open questions

• Is every reduced Rickart ring isomorphic to an associate ring?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Which focal Rickart rings are subdirectly irreducible?

References

T.P. Speed, M.W. Evans: A note on commutative Baer rings, J. Aust. Math. Soc. 13 (1971), 1-6.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

J. Cīrulis: *Extending the star order to Rickart rings*, Linear and Multilinear Algebra (2015)

Thank you for your attention

Questions?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの