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A focal (Rickart) ring is an algebra (R, +,-,—,,",0,1), where
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o 'is its left focal operation.
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ab=0 <= ba=0.
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Example: Associate rings

Definition
Let A be a subdirect sum of rings R; without divisors of zero. The ringA is
called associate ring if for every a € A the element a° defined by

a; =
1, else

belongs to A.

Proposition

Every associate ring is a reduced Rickart ring with focal operation defined

by

a =1-—2a°
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@ The same holds for unitary left-focal rings.
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Permutability and regularity

Definition
Let A be an algebra.

@ A is called congruence permutable if for all congruences 6, o holds
foo=0o08.

e A is called regular ir for all congruences 6,0 and for all a € A from
[a], = [a]y follows o = 6.

Proposition

The varieties mentioned in this talk are permutable and regular.
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@ Is every reduced Rickart ring isomorphic to an associate ring?
e Which focal Rickart rings are subdirectly irreducible?
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