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Commutative focal Rickart rings

Theorem (Speed, Evans)

A commutative ring 〈R,+, ·, 0〉 is a Rickart ring if and only if it admits a

unary operation ′ with

aa′ = 0,

aa′′ = a,

(ab)′ = a′ + b′ − a′b′.

Corollary (Speed, Evans)

The class of commutative focal rings is a variety.
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Example: Associate rings

De�nition

Let A be a subdirect sum of rings Ri without divisors of zero. The ringA is

called associate ring if for every a ∈ A the element a0 de�ned by

a0i :=

{
0, if ai = 0

1, else

belongs to A.

Proposition

Every associate ring is a reduced Rickart ring with focal operation de�ned

by

a′ := 1− a0.
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De�nition

Let A be an algebra.

A is called congruence permutable if for all congruences θ, σ holds

θ ◦ σ = σ ◦ θ.
A is called regular ir for all congruences θ, σ and for all a ∈ A from

[a]σ = [a]θ follows σ = θ.

Proposition

The varieties mentioned in this talk are permutable and regular.
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