The second centralizer of a monounary algebra

Miroslava Černegová coauthor Danica Jakubíková-Studenovská

P. J. Šafárik University, Košice

AAA92 May 28, 2016

Miroslava Černegová, coauthor Danica Jakubíková-Studenovská [The second centralizer of a monounary algebra](#page-0-0)

AIMS

- conditions for an operation f when the operation is uniquely determined by its second centralizer
- algorithm for describing f by means of the second centralizer

Definition

For a nonempty set A, a mapping $f: A \rightarrow A$ is called a *unary operation* on A. The pair (A, f) is said to be a *monounary algebra*.

Definition

The centralizer of a monounary algebra (A, f) is the set $\mathcal{C}(A, f)$ of those mappings $q: A \rightarrow A$ which commute with the mapping f.

Definition

The first centralizer of (A, f) : $C_1(A, f) = C(A, f)$. The second centralizer of (A, f) is the set

$$
C_2(A, f) = \bigcap_{g \in C_1(A, f)} C_1(A, g).
$$

Preliminaries

 \bullet f and g are equivalent with respect to the first centralizer if

 $f \approx_1 q \Longleftrightarrow C_1 (A, f) = C_1 (A, q)$

 \bullet f and q are equivalent with respect to the second centralizer if

$$
f \approx_2 g \iff C_2(A, f) = C_2(A, g)
$$

Theorem

Mappings f and g of a set A into A are equivalent with respect to the first centralizer if and only if they are equivalent with respect to the second centralizer.

• The equality of the second centralizers do not imply the equality of the first centralizers of algebras (A, F) such that either F consists of an operation which is at least binary or $|F| > 1$.

Preliminaries

Definition

We will denote $s\left(x\right) =\infty$ if there exists a sequence $\left\{ x_{n}\right\} _{n\in\mathbb{N}_{0}}$ of elements belonging to A with the property $x_0 = x$ and $f(x_n) = x_{n-1}$ for each $n \in \mathbb{N}$.

Definition

Next, $s(x) = k$, where $k \in \mathbb{N}_0$, if k is the largest element of \mathbb{N}_0 such that $f^{-k}(x) \neq \emptyset$.

Theorem 1

Let (A, f) be a connected monounary algebra. Then $C_2(A, f)$ uniquely determines f if and only if one of the following conditions is fulfilled:

(a)
$$
s(x) \neq \infty
$$
 for each $x \in A$,

- (b) (A, f) contains a one-element cycle,
- (c) (A, f) contains a k-element cycle with long tails, $k > 1$,
- (d) (A, f) does not contain any cycle and there exist distinct elements $u, u', v, v' \in A$ such that $f(u) = u'$, $f(v) = v'$, $f(u') = f(v').$

Theorem 2

Let (A, f) be a non-connected monounary algebra. Then $C_2(A, f)$ uniquely determines f if and only if one of the following conditions is fulfilled:

- (a) A contains a component B such that $s(x) \neq \infty$ for each $x \in B$, or B does not contain any cycle and there exist distinct elements $u,u',v,v' \in B$ such that $f\left(u \right) = u',\, f\left(v \right) = v',\, f\left(u' \right) = f\left(v' \right)$,
- (b) A contains a line with short tails and a k -element cycle with long tails, $k > 2$.
- (c) A contains a line with short tails and a k-element cycle with an infinite tail, $k \in \{1, 2\}$,
- (d) each component contains a cycle, where to each *l*-element cycle with short tails, $l > 2$, there is a k-element cycle with long tails, $k > 2$, such that

\n- either
$$
l \mid k
$$
,
\n- or $k \mid l$ and there is no $n \in \mathbb{N}$ with $1 < n < l$, $(n, l) = 1$, $n \equiv 1 \pmod{k}$.
\n

Theorem $2(a)$

A contains a component B such that $s(x) \neq \infty$ for each $x \in B$, or B does not contain any cycle and there exist distinct elements $u, u', v, v' \in B$ such that $f(u) = u'$, $f(v) = v'$, $f(u') = f(v')$.

Theorem 2(b)

A contains a line with short tails and a k-element cycle with long tails, $k > 2$.

Theorem $2(c)$

 A contains a line with short tails and a k -element cycle with an infinite tail, $k \in \{1, 2\}.$

Theorem $2(d)$

each component contains a cycle, where to each l-element cycle with short tails, $l > 2$, there is a k-element cycle with long tails, $k > 2$, such that

- \bullet either $l|k$,
- or k |l and there is no $n \in \mathbb{N}$ with $1 < n < l$, $(n, l) = 1$, $n \equiv 1 \pmod{k}$.

Notations

Let E be a monoid of transformations of a given set A .

Suppose that E is a centralizer of some monounary algebra defined on A .

- \bullet V_0 a set of all cyclic elements of the algebra
- $V_1 = \{x \in A \setminus V_0 : f(x) \in V_0\}$
- **•** Assume that we have defined V_i for each $i \leq n, n \in \mathbb{N}$.

•
$$
V_{n+1} = \{x \in A : f(x) \in V_n\}
$$

- \bullet *i*-layer V_i , $i \in \mathbb{N}$
- \bullet $V_0(C)$ a cycle C from V_0 .
- \bullet $V_0(c)$ a one-element cycle (consisting of the element c)
- for $k \in \mathbb{N}$, the k-layer corresponding to C is the set $V_k(C) = \{x \in V_k : f(x) \in V_{k-1}(C)\}\$
- the union of sets $V_i(C)$, $i \geq 0$ is the set of elements of the component containing the cycle C

Proposition

Let V^1_0 be a set of all one-element cycles in the algebra. Let $c \in A.$

- (i) The element c belongs to V_0^1 if and only if there exists $\varphi \in E$ such that $\varphi(x) = c$ for all $x \in A$.
- (ii) Let $x \in A$, $x \notin V_0^1$. Then $x \in V_1$ (c) and $f(x) = c$ if and only if there exists $\varphi \in E$ such that $\varphi^{-1}\left(c\right)=\{c,x\}.$
- (iii) Let $x \notin V_0^1 \cup V_1^1$, $y \in V_1^1(c)$. Then $x \in V_2^1(c)$ and $f(x) = y$ if and only if there exists $\varphi \in E$ such that $\varphi^{-1}\left(c\right)=\left\{c,y\right\}$ and $\varphi\left(x\right)=y.$
- $({\rm iv})$ Suppose that we have described operation f for all elements $z\in V^1_i(c)$, $i\leq n.$ Let $x\notin V_0^1\cup V_1^1\cup\ldots\cup V_n^1$, $y\in V_n$ $(c).$ Then $x\in V_{n+1}$ (c) and $f\left(x\right)=y$ if and only if there exists $\varphi\in E$ such that $\varphi^{-1}\left(V_{1}\left(c\right)\right)=\{y\}$ and $\varphi(x) \in V_2(c)$.
- Let V^1 be a set of all elements of components containing one-element cycle in the algebra.
- Let E_1 be a set of all $\varphi \in E$ such that $\varphi \left(x \right) \in A \setminus V^1$ for all $x \in A \setminus V^1.$
- A cycle B of length at least 2 is called a minimal cycle if $|D| = |B|$ or $|D|$ \nmid $|B|$ is valid for every cycle D.
- A set $\{D_i : i \in I\}$ of cycles is said to be minimal if $|D_i| \neq |D_j|$ for $i \neq j$ and to every minimal cycle B there exists $k \in I$ such that $|B| = |D_k|$. In other words, the only representative is selected from the minimal cycles of the same length.
- If $D = \bigcup_{i \in I} D_i$, we say that D is a minimal set of cyclic elements.

Lemma

Let $\min_{\psi \in E_1} |\psi(A \setminus V^1)| = k$.

- (a) C, $C \subseteq A$ is a minimal cycle, iff there exists $\varphi \in E_1$ such that $|\varphi(A \setminus V^1)| = k, C \subseteq \varphi(A \setminus V^1).$
- (b) The element $x \in A \setminus V^1$ belongs to some minimal cycle, iff there exists $\varphi \in E_1$ such that $|\varphi(A \setminus V^1)| = k$, $x \in \textsf{Im }\varphi$.
- (c) The elements $x, y \in D$ belong to the same minimal cycle, iff there exists $\varphi \in E_1$ such that $\varphi(x) = y$.
- (d) The elements $x, y \in A \setminus V^1$ belong to the same component iff for all $\varphi \in E_1$ if $\varphi(x) \neq x$ is from some minimal cycle then $\varphi(y) \neq y$.
- (e) Let K be the component without a minimal cycle. Consider $E_2 = \{ \psi : \psi(z) = z, \forall z \notin K, \psi(y) \neq y, \forall y \in K \}$. The set of cyclic elements in K is $\bigcap_{\varphi \in E_2}$ Im $(\varphi \restriction K)$.

Proposition

Let C be a cycle of length at least 2.

- (i) There exists φ_0 such that φ_0 $(c) \neq c$ for all $c \in C$ and the set ${y : \varphi_0 (y) \in C}$ is minimal for all such mappings. Then $V_1(C) = \varphi_0^{-1}(C) \setminus C.$
- (ii) $V_2(C) = \{t : \varphi_0(t) \in V_1(C)\}.$
- (iii) Suppose that we have described *i*-layer $V_i(C)$ for $2 \leq i < n$. Then $V_n(C) = \{t : \varphi_0(t) \in V_{n-1}(C)\}.$

Proposition

Let C be a cycle of length at least 2 such that $V_2(C) = \emptyset$. Let $x \in V_1(C)$. There exist $x'\in C$ and $\varphi\in E_1$ such that $\varphi\left(t\right)=\begin{cases} x' & \text{if } t\in\left\{x,x'\right\}, \ \end{cases}$ t otherwise. Then $f\left(x\right)=f\left(x^{\prime}\right)$ where f is one of the mappings $\varphi\in E_{1}$ which is a permutation consisting of a single one cycle.

Proposition

Let C be a cycle of length at least 2 such that V_2 (C) $\neq \emptyset$.

- (i) Let $z_2 \in V_2(C)$. There exists the only element $z_1 \in V_1(C)$ such that for all $\varphi \in E_1$ if $\varphi (z_1) \in C$ then $\varphi (z_2) \in V_0 (C) \cup V_1 (C)$. Hence $f(z_2) = z_1$. There exists the only element $z_0 \in C$ such that for all $\varphi \in E_1$ if $\varphi(z_2) = z_1$ then $\varphi(z_1) = z_0$. Hence $f(z_1) = z_0$. There exist $\varphi \in E_1$, $x' \in C$ such that $\varphi(z_1) = x'$, $\varphi(z_2) \in C$. Then $f\left(\varphi\left(z_{2}\right) \right) =x^{\prime}.$ Now we can describe operation on the cycle. Let $c\in C,$ $\psi : \varphi (z_2) \longmapsto x'$; then $f(c) = \psi (c)$. (ii) Suppose that we have already described $f(x)$ for $x \in V_i(C)$, $2 \leq i \leq n$. Let $z_n \in V_n(C)$. There exists the only element $z_{n-1} \in V_{n-1}(C)$ such
	- that there exists $\psi \in E_1$ for which $\psi \left(z_{n-1} \right) = f^{n-2} \left(t \right) \in V_1 \left(C \right);$ $\psi(y) \in C$; $\psi(z_n) \in V_2(C)$. Then $f(z_n) = z_{n-1}$.

Theorem

Let f be a mapping of A to A . Then f is uniquely determined by E if and only if f is constructed according to the above algorithms and f fulfills the condition (d) of Theorem 2.

Thank you for your attention.

Miroslava Černegová, coauthor Danica Jakubíková-Studenovská [The second centralizer of a monounary algebra](#page-0-0)