The second centralizer of a monounary algebra

Miroslava Černegová coauthor Danica Jakubíková-Studenovská

P. J. Šafárik University, Košice

AAA92 May 28, 2016

Miroslava Černegová, coauthor Danica Jakubíková-Studenovská The second centralizer of a monounary algebra

AIMS

- conditions for an operation f when the operation is uniquely determined by its second centralizer
- ${\scriptstyle \bullet}$ algorithm for describing f by means of the second centralizer

Definition

For a nonempty set A, a mapping $f: A \to A$ is called a *unary operation* on A. The pair (A, f) is said to be a *monounary algebra*.

Definition

The *centralizer* of a monounary algebra (A, f) is the set $\mathcal{C}(A, f)$ of those mappings $g: A \to A$ which commute with the mapping f.

Definition

The first centralizer of (A, f): $C_1(A, f) = C(A, f)$. The second centralizer of (A, f) is the set

$$\mathcal{C}_2(A,f) = \bigcap_{g \in \mathcal{C}_1(A,f)} \mathcal{C}_1(A,g).$$

Preliminaries

• f and g are equivalent with respect to the first centralizer if

$$f \approx_1 g \Longleftrightarrow C_1(A, f) = C_1(A, g)$$

• f and g are equivalent with respect to the second centralizer if

$$f \approx_2 g \Longleftrightarrow C_2(A, f) = C_2(A, g)$$

Theorem

Mappings f and g of a set A into A are equivalent with respect to the first centralizer if and only if they are equivalent with respect to the second centralizer.

• The equality of the second centralizers do not imply the equality of the first centralizers of algebras (A, F) such that either F consists of an operation which is at least binary or |F| > 1.

Preliminaries

Definition

We will denote $s(x) = \infty$ if there exists a sequence $\{x_n\}_{n \in \mathbb{N}_0}$ of elements belonging to A with the property $x_0 = x$ and $f(x_n) = x_{n-1}$ for each $n \in \mathbb{N}$.

Definition

Next, s(x) = k, where $k \in \mathbb{N}_0$, if k is the largest element of \mathbb{N}_0 such that $f^{-k}(x) \neq \emptyset$.

Theorem 1

Let (A, f) be a connected monounary algebra. Then $C_2(A, f)$ uniquely determines f if and only if one of the following conditions is fulfilled:

(a)
$$s(x) \neq \infty$$
 for each $x \in A$,

(b) (A, f) contains a one-element cycle,

(c) (A, f) contains a k-element cycle with long tails, k > 1,

(d) (A, f) does not contain any cycle and there exist distinct elements $u, u', v, v' \in A$ such that f(u) = u', f(v) = v', f(u') = f(v').

Theorem 2

Let (A, f) be a non-connected monounary algebra. Then $C_2(A, f)$ uniquely determines f if and only if one of the following conditions is fulfilled:

- (a) A contains a component B such that $s(x) \neq \infty$ for each $x \in B$, or B does not contain any cycle and there exist distinct elements $u, u', v, v' \in B$ such that f(u) = u', f(v) = v', f(u') = f(v'),
- (b) A contains a line with short tails and a $k\mbox{-element}$ cycle with long tails, k>2,
- (c) A contains a line with short tails and a k-element cycle with an infinite tail, $k\in\{1,2\},$
- (d) each component contains a cycle, where to each *l*-element cycle with short tails, l > 2, there is a *k*-element cycle with long tails, k > 2, such that

• either
$$l \mid k$$
,
• or $k \mid l$ and there is no $n \in \mathbb{N}$ with $1 < n < l$, $(n, l) = 1$,
 $n \equiv 1 \pmod{k}$.

Theorem 2(a)

A contains a component B such that $s\left(x\right)\neq\infty$ for each $x\in B$, or B does not contain any cycle and there exist distinct elements $u,u',v,v'\in B$ such that $f\left(u\right)=u',\ f\left(v\right)=v',\ f\left(u'\right)=f\left(v'\right).$

Theorem 2(b)

A contains a line with short tails and a k-element cycle with long tails, k>2.

Theorem 2(c)

A contains a line with short tails and a k-element cycle with an infinite tail, $k\in\{1,2\}.$

Theorem 2(d)

each component contains a cycle, where to each *l*-element cycle with short tails, l > 2, there is a *k*-element cycle with long tails, k > 2, such that

- either $l \mid k$,
- or $k \mid l$ and there is no $n \in \mathbb{N}$ with 1 < n < l, (n, l) = 1, $n \equiv 1 \pmod{k}$.

Notations

Let E be a monoid of transformations of a given set A. Suppose that E is a centralizer of some monounary algebra defined on A.

- V_0 a set of all cyclic elements of the algebra
- $V_1 = \{x \in A \setminus V_0 : f(x) \in V_0\}$
- Assume that we have defined V_i for each $i \leq n$, $n \in \mathbb{N}$.

•
$$V_{n+1} = \{x \in A : f(x) \in V_n\}$$

- *i*-layer V_i , $i \in \mathbb{N}$
- $V_0(C)$ a cycle C from V_0 .
- $V_0(c)$ a one-element cycle (consisting of the element c)
- for $k \in \mathbb{N}$, the k-layer corresponding to C is the set $V_k(C) = \{x \in V_k : f(x) \in V_{k-1}(C)\}$
- the union of sets $V_i(C)$, $i \ge 0$ is the set of elements of the component containing the cycle C

Proposition

Let V_0^1 be a set of all one-element cycles in the algebra. Let $c \in A$.

- (i) The element c belongs to V_0^1 if and only if there exists $\varphi \in E$ such that $\varphi(x) = c$ for all $x \in A$.
- (ii) Let $x \in A$, $x \notin V_0^1$. Then $x \in V_1(c)$ and f(x) = c if and only if there exists $\varphi \in E$ such that $\varphi^{-1}(c) = \{c, x\}$.
- (iii) Let $x \notin V_0^1 \cup V_1^1$, $y \in V_1^1(c)$. Then $x \in V_2^1(c)$ and f(x) = y if and only if there exists $\varphi \in E$ such that $\varphi^{-1}(c) = \{c, y\}$ and $\varphi(x) = y$.
- (iv) Suppose that we have described operation f for all elements $z \in V_i^1(c)$, $i \leq n$. Let $x \notin V_0^1 \cup V_1^1 \cup \ldots \cup V_n^1$, $y \in V_n(c)$. Then $x \in V_{n+1}(c)$ and f(x) = y if and only if there exists $\varphi \in E$ such that $\varphi^{-1}(V_1(c)) = \{y\}$ and $\varphi(x) \in V_2(c)$.

- Let V^1 be a set of all elements of components containing one-element cycle in the algebra.
- Let E_1 be a set of all $\varphi \in E$ such that $\varphi(x) \in A \setminus V^1$ for all $x \in A \setminus V^1$.
- A cycle B of length at least 2 is called a *minimal cycle* if |D| = |B| or $|D| \nmid |B|$ is valid for every cycle D.
- A set {D_i : i ∈ I} of cycles is said to be *minimal* if |D_i| ≠ |D_j| for i ≠ j and to every minimal cycle B there exists k ∈ I such that |B| = |D_k|. In other words, the only representative is selected from the minimal cycles of the same length.
- If $D = \bigcup_{i \in I} D_i$, we say that D is a minimal set of cyclic elements.

Lemma

Let $\min_{\psi \in E_1} |\psi(A \setminus V^1)| = k.$

- (a) $C, C \subseteq A$ is a minimal cycle, iff there exists $\varphi \in E_1$ such that $|\varphi(A \setminus V^1)| = k, C \subseteq \varphi(A \setminus V^1).$
- (b) The element $x \in A \setminus V^1$ belongs to some minimal cycle, iff there exists $\varphi \in E_1$ such that $|\varphi(A \setminus V^1)| = k$, $x \in \text{Im } \varphi$.
- (c) The elements $x, y \in D$ belong to the same minimal cycle, iff there exists $\varphi \in E_1$ such that $\varphi(x) = y$.
- (d) The elements $x, y \in A \setminus V^1$ belong to the same component iff for all $\varphi \in E_1$ if $\varphi(x) \neq x$ is from some minimal cycle then $\varphi(y) \neq y$.
- (e) Let K be the component without a minimal cycle. Consider E₂ = {ψ : ψ (z) = z, ∀z ∉ K, ψ (y) ≠ y, ∀y ∈ K}. The set of cyclic elements in K is ⋂_{φ∈E2} Im (φ ↾ K).

Proposition

Let C be a cycle of length at least 2.

(i) There exists φ_0 such that $\varphi_0(c) \neq c$ for all $c \in C$ and the set $\{y : \varphi_0(y) \in C\}$ is minimal for all such mappings. Then $V_1(C) = \varphi_0^{-1}(C) \setminus C$.

- (ii) $V_2(C) = \{t : \varphi_0(t) \in V_1(C)\}.$
- (iii) Suppose that we have described *i*-layer $V_i(C)$ for $2 \le i < n$. Then $V_n(C) = \{t : \varphi_0(t) \in V_{n-1}(C)\}.$

Proposition

Let C be a cycle of length at least 2 such that $V_2(C) = \emptyset$. Let $x \in V_1(C)$. There exist $x' \in C$ and $\varphi \in E_1$ such that $\varphi(t) = \begin{cases} x' & \text{if } t \in \{x, x'\}, \\ t & \text{otherwise.} \end{cases}$ Then f(x) = f(x') where f is one of the mappings $\varphi \in E_1$ which is a permutation consisting of a single one cycle.

Proposition

Let C be a cycle of length at least 2 such that $V_2(C) \neq \emptyset$.

(i) Let z₂ ∈ V₂ (C). There exists the only element z₁ ∈ V₁ (C) such that for all φ ∈ E₁ if φ (z₁) ∈ C then φ (z₂) ∈ V₀ (C) ∪ V₁ (C). Hence f (z₂) = z₁. There exists the only element z₀ ∈ C such that for all φ ∈ E₁ if φ (z₂) = z₁ then φ (z₁) = z₀. Hence f (z₁) = z₀. There exist φ ∈ E₁, x' ∈ C such that φ (z₁) = x', φ (z₂) ∈ C. Then f (φ (z₂)) = x'. Now we can describe operation on the cycle. Let c ∈ C, ψ : φ (z₂) ↦ x'; then f (c) = ψ (c).
(ii) Suppose that we have already described f (x) for x ∈ V_i (C), 2 ≤ i < n. Let z_n ∈ V_n (C). There exists the only element z_{n-1} ∈ V_{n-1} (C) such that there exists ψ ∈ E₁ for which ψ (z_{n-1}) = fⁿ⁻² (t) ∈ V₁ (C);

$$\psi(y) \in C; \ \psi(z_n) \in V_2(C).$$
 Then $f(z_n) = z_{n-1}$.

Theorem

Let f be a mapping of A to A. Then f is uniquely determined by E if and only if f is constructed according to the above algorithms and f fulfills the condition (d) of Theorem 2.

Thank you for your attention.

Miroslava Černegová, coauthor Danica Jakubíková-Studenovská The second centralizer of a monounary algebra