Globals of graphs

Ivica Bošnjak and Rozália Madarász

Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia

AAA92, Prague, May 2016.

I. Bošnjak, R. Madarasz Globals of graphs

Wider context: Power constructions in universal algebra

Three main power constructions:

- Power algebras: every operation *f* : *Aⁿ* → *A* can be extended to an *n*-ary operation *f*⁺ on the powerset *P*(*A*)
- Complex algebras: for any *n* + 1-ary relation on *A*, an *n*-ary operation on the powerset $\mathcal{P}(A)$ can be defined
- Power relations: an *n*-ary relation on *A* can be extended to an *n*-ary relation on the powerset $\mathcal{P}(A)$

Power relations

Definition

if *R* is a binary relation on *A* then R^+ is a binary relation on $\mathcal{P}(A)$ such that

 $XR^+Y \iff (\forall x \in X)(\exists y \in Y) xRy \& (\forall y \in Y)(\exists x \in X) xRy.$

I. Bošnjak, R. Madarasz Globals of graphs

Power relations

Definition

if *R* is a binary relation on *A* then R^+ is a binary relation on $\mathcal{P}(A)$ such that

$$XR^+Y \iff (\forall x \in X)(\exists y \in Y) xRy \& (\forall y \in Y)(\exists x \in X) xRy.$$

Definition

The *global* of a graph G = (V, E), denoted by $\mathcal{P}(G)$, is the graph with the set of vertices $\mathcal{P}(V)$ (the powerset of *V*), whose edges are determined by: for all $X, Y \in \mathcal{P}(G)$ XE^+Y if and only if $(\forall x \in X)(\exists y \in Y)xEy$ and $(\forall y \in Y)(\exists x \in X)xEy$.

I. Bošnjak, R. Madarasz Globals of graphs

Global determinism of graphs

Definition

For a class *K* of graphs we say that it is *globally determined* if for all graphs G_1 and G_2 from *K*, $\mathcal{P}(G_1) \simeq \mathcal{P}(G_2)$ implies $G_1 \simeq G_2$.

- Drápal, Globals of unary algebras (1985)
- Baumann, Pöschel, Schmeichel, Power graphs (1994)

CCB graphs

- Finite graphs whose connected components are complete graphs (with loops) or complete bipartite graphs
- CCB graphs are only finite graphs whose graph algebras have finite equational basis

Globals of CCB graphs

Proposition

If G is a a CCB graph, then the global of G is a CCB graph.

Proposition

If $\mathcal{P}(G)$ is a CCB graph, then G is a CCB graph.

Proposition

If *G* has *n* complete components and *m* bipartite components, then $\mathcal{P}(G)$ has 2^{n+m} complete components and $\frac{2^{n+2m}-2^{n+m}}{2}$ bipartite components.

I. Bošnjak, R. Madarasz Globals of graphs University of Novi Sad

▲□▶ ▲圖▶ ▲厘▶

Two useful theorems

Theorem (Goldblatt)

$$\mathcal{P}(\sum_{i\in I}G_i)\simeq\prod_{i\in I}\mathcal{P}(G_i)$$

Theorem (Lovász)

Let G_1 , G_2 and H be graphs. If $G_1 \times H \simeq G_2 \times H$ and H has a loop, then $G_1 \simeq G_2$.

I. Bošnjak, R. Madarasz Globals of graphs University of Novi Sad

A D > <
A P >
A

Theorem

The class of finite CCB graphs is globally determined

I. Bošnjak, R. Madarasz Globals of graphs

Theorem

The class of finite CCB graphs is globally determined

Induction on the number of components

I. Bošnjak, R. Madarasz Globals of graphs

Theorem

The class of finite CCB graphs is globally determined

- Induction on the number of components
- $\mathcal{P}(H+G_1) \simeq \mathcal{P}(H+G_2) \Rightarrow \mathcal{P}(H) \times \mathcal{P}(G_1) \simeq \mathcal{P}(H) \times \mathcal{P}(G_2)$

▲□▶ ▲圖▶ ▲厘▶

Theorem

The class of finite CCB graphs is globally determined

- Induction on the number of components
- $\mathcal{P}(H+G_1) \simeq \mathcal{P}(H+G_2) \Rightarrow \mathcal{P}(H) \times \mathcal{P}(G_1) \simeq \mathcal{P}(H) \times \mathcal{P}(G_2)$
- $\mathcal{P}(H) \times \mathcal{P}(G_1) \simeq \mathcal{P}(H) \times \mathcal{P}(G_2) \Rightarrow \mathcal{P}(G_1) \simeq \mathcal{P}(G_2)$

University of Novi Sad

Image: A image: A

Forests

- A tree is a connected graph without cycles
- A forest is a disjoint union of trees
- Trees (and forests) are bipartite graphs

Trees are globally determined

Proposition

Let G = (V, E) be an undirected graph. If Y is adjacent to a leaf in $\mathcal{P}(G)$ and $y \in Y$, then $\{y\}$ is adjacent to a leaf in $\mathcal{P}(G)$).

Proposition

Let G = (V, E) be a finite undirected connected graph and $Y = \{y_1, \dots, y_r\}, r \ge 2$, be a neighbour of a leaf in $\mathcal{P}(G)$. Then

$$d(Y) > \max_{y_i \in Y} d(\{y_i\}).$$

I. Bošnjak, R. Madarasz Globals of graphs

Trees are globally determined

Proposition

Let G = (V, E) be a finite tree and $u \in V$. If X is a neighbour of $\{u\}$ and $d(X) = 2^k - 1$ for $k \ge 2$, then X is a singleton. If d(X) = 1 then there is at least one singleton among the leaves of $\mathcal{P}(G)$ which are neighbours of $\{u\}$.

Theorem

The class of finite trees is globally determined.

I. Bošnjak, R. Madarasz Globals of graphs

Forests are globally determined

- If the global of a forest is given, it is possible to identify one component of that forest
- Therefore, the class of finite forests is globally determined
- As well as disjoint unions of tournaments, regular digraphs, bipartite tournaments with loops, ...

Thank you for your attention!

I. Bošnjak, R. Madarasz Globals of graphs