

Reconstructing the topology on monoids and clones of the rationals

Mike Behrisch \times^1 John K Truss^{*} Edith Vargas-García^{†2}

 $^{\times}$ Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

*Department of Pure Mathematics University of Leeds

> [†]UACM Mexico City

28th May 2016 • Prague

¹Originally supported by the Austrian Science Fund (FWF) under grant 1836-N23. ²Supported by CONACYT.

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

• $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

- $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation
- consider A as discrete space $(A, \mathfrak{P}(A))$

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

- $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation
- consider A as discrete space $(A, \mathfrak{P}(A))$
- $\implies A^{A^n}$ has product topology (pointwise convergence)

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

• $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies A^{A^n} has product topology (pointwise convergence)

• basic open sets: $\{f \in A^{A^n} \mid f|_B = p\}$, where $p: B \longrightarrow A$ partial *n*-ary, $B \subseteq A^n$ finite

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

• $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 $\implies A^{A^n}$ has product topology (pointwise convergence)

• basic open sets: $\{f \in A^{A^n} \mid f|_B = p\}$, where $p: B \longrightarrow A$ partial *n*-ary, $B \subseteq A^n$ finite

•
$$|A| = \aleph_0 \implies A^{A^n}$$
 (ultra-)metrizable

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

• $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies A^{A^n} has product topology (pointwise convergence)

• basic open sets: $\{f \in A^{A^n} \mid f|_B = p\}$, where $p: B \longrightarrow A$ partial *n*-ary, $B \subseteq A^n$ finite

•
$$|A| = \aleph_0 \implies A^{A^n}$$
 (ultra-)metrizable

Clones

$$F \subseteq O_A = \coprod_{n \in \mathbb{N}} A^{A'}$$

induced subspace topology

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

• $(f: A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies A^{A^n} has product topology (pointwise convergence)

• basic open sets: $\{f \in A^{A^n} \mid f|_B = p\}$, where $p: B \longrightarrow A$ partial *n*-ary, $B \subseteq A^n$ finite

•
$$|A| = \aleph_0 \implies A^{A^n}$$
 (ultra-)metrizable

Clones

$$F \subseteq O_A = \coprod_{n \in \mathbb{N}} A^A$$

induced subspace topology

Transformation monoids

$$F \subseteq A^A$$
, i.e. $n = 1$

M. Behrisch, J. K. Truss, E. Vargas-García

induced subspace topology

Reconstructing the topology on monoids and clones of the

for closed transformation monoids (= endomorphism monoids)

for closed clones (= polymorphism clones)

for closed transformation monoids (= endomorphism monoids) $M \subseteq O_A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$

for closed clones (= polymorphism clones)

for closed transformation monoids (= endomorphism monoids) $M \subseteq O_A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$ $\forall \varphi \colon M \longrightarrow M' \le O_{\Omega}^{(1)}$ M' closed, $|\Omega| = \aleph_0$ φ alg. iso

for closed clones (= polymorphism clones)

 $\begin{array}{l} \mbox{for closed transformation monoids} (= \mbox{endomorphism monoids}) \\ M \subseteq \mathcal{O}_A^{(1)} \mbox{(locally) closed transformation monoid, } |A| = \aleph_0 \\ \forall \varphi \colon M \longrightarrow M' \leq \mathcal{O}_{\Omega}^{(1)} \\ M' \mbox{ closed, } |\Omega| = \aleph_0 \\ \varphi \mbox{ alg. iso} \end{array} \qquad \begin{array}{l} \varphi \colon M \leq A^A \longrightarrow M' \leq \Omega^\Omega \\ \Longrightarrow \\ \varphi \mbox{ top. iso (homeomorphism)} \end{array}$

for closed clones (= polymorphism clones)

 $\begin{array}{l} \mbox{for closed transformation monoids} (= \mbox{endomorphism monoids}) \\ M \subseteq \mathcal{O}_A^{(1)} \mbox{(locally) closed transformation monoid, } |A| = \aleph_0 \\ \forall \varphi \colon M \longrightarrow M' \leq \mathcal{O}_{\Omega}^{(1)} \\ M' \mbox{ closed, } |\Omega| = \aleph_0 \\ \varphi \mbox{ alg. iso} \end{array} \begin{array}{l} \varphi \colon M \leq A^A \longrightarrow M' \leq \Omega^\Omega \\ \Longrightarrow \\ \varphi \mbox{ top. iso (homeomorphism)} \end{array}$

 $\begin{array}{l} \text{for closed clones (= polymorphism clones)} \\ F \subseteq O_A \text{ (locally) closed clone, } |A| = \aleph_0 \\ \forall \varphi \colon F \longrightarrow C \leq O_\Omega \\ C \text{ closed, } |\Omega| = \aleph_0 \\ \varphi \text{ alg. iso} \end{array} \xrightarrow[]{} \begin{array}{l} \forall n \in \mathbb{N} \\ \Rightarrow \varphi \colon F^{(n)} \leq A^{A^n} \longrightarrow C^{(n)} \leq \Omega^{\Omega^n} \\ \varphi \text{ top. iso (homeomorphism)} \end{array}$

Reconstructing the topology on monoids and clones of the

Known examples, $|A| = \aleph_0$ • Aut ($\mathbb{Q}, <$) (Truss)(This is a group!)• Aut (A, A) = Sym(A) (Rabinovič),
End(A, A) = $O_A^{(1)}$, Emb (A, A) = Inj(A) (BPP)• Aut G (Hodges et al./Rubin),
Emb G (BPP)random graph• Emb D (BPP)random directed graph

Known examples, $|A| = \aleph_0$ • Aut $(\mathbb{Q}, <)$ (Truss) (This is a group!) • Aut (A, A) = Sym(A) (Rabinovič), $\operatorname{End}(A, A) = O_{A}^{(1)}, \operatorname{Emb}(A, A) = \operatorname{Inj}(A) (BPP)$ Aut G (Hodges et al./Rubin), Emb G (BPP) random graph Emb D (BPP) random directed graph • $O_A^{(1)} \subseteq F = \overline{F} \leq O_A$, e.g. $\left\langle O_A^{(1)} \right\rangle_{O_A}$, O_A (BPP)

Known examples, $|A| = \aleph_0$ • Aut $(\mathbb{Q}, <)$ (Truss) (This is a group!) • Aut (A, A) = Sym(A) (Rabinovič), $\operatorname{End}(A, A) = O_{A}^{(1)}, \operatorname{Emb}(A, A) = \operatorname{Inj}(A) (BPP)$ Aut G (Hodges et al./Rubin), Emb G (BPP) random graph Emb D (BPP) random directed graph • $O_{\mathcal{A}}^{(1)} \subseteq \mathcal{F} = \overline{\mathcal{F}} \leq O_{\mathcal{A}}$, e.g. $\left\langle O_{\mathcal{A}}^{(1)} \right\rangle_{O}$, $O_{\mathcal{A}}$ (BPP) Pol G (BPP) random graph

Known examples, $|A| = \aleph_0$ • Aut $(\mathbb{Q}, <)$ (Truss) (This is a group!) • Aut (A, A) = Sym(A) (Rabinovič), $\operatorname{End}(A, A) = O_{A}^{(1)}, \operatorname{Emb}(A, A) = \operatorname{Inj}(A) (BPP)$ Aut G (Hodges et al./Rubin), Emb G (BPP) random graph Emb D (BPP) random directed graph • $O_A^{(1)} \subseteq F = \overline{F} \leq O_A$, e.g. $\left\langle O_A^{(1)} \right\rangle_{O_A}$, O_A (BPP) Pol G (BPP) random graph • *H* (BPP) Horn clone

Our contribution...

•
$$M := \operatorname{End} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, \leq)$$

- $E := \operatorname{End}(\mathbb{Q}, \leq)$
- Pol (\mathbb{Q}, \leq)

have automatic homeomorphicity

. . .

Our contribution...

•
$$M := \operatorname{End} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, \leq)$$

- $E := \operatorname{End}(\mathbb{Q}, \leq)$
- Pol (\mathbb{Q}, \leq)

have automatic homeomorphicity

Disclaimer $\mathsf{C\&M} \ \mathsf{Pech} \ \mathsf{proved} \ `automatic \ \mathsf{homeomorphicity'} \ \mathsf{of} \ \mathsf{End}(\mathbb{Q},\leq)$

M. Behrisch, J.K. Truss, E. Vargas-García

Reconstructing the topology on monoids and clones of the

Our contribution...

•
$$M := \operatorname{End} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, \leq)$$

- $E := \operatorname{End}(\mathbb{Q}, \leq)$
- Pol (\mathbb{Q}, \leq)

have automatic homeomorphicity

Disclaimer C & M Pech proved 'automatic homeomorphicity' of $\operatorname{End}(\mathbb{Q}, \leq)$...w.r.t. all closed $M' \leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

M. Behrisch, J. K. Truss, E. Vargas-García

Reconstructing the topology on monoids and clones of the

Our contribution...

•
$$M := \operatorname{End} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, \leq)$$

•
$$E := \operatorname{End}(\mathbb{Q}, \leq)$$

• Pol (\mathbb{Q}, \leq)

have automatic homeomorphicity

We don't know about... Pol ($\mathbb{Q}, <$)

Disclaimer

C & M Pech proved 'automatic homeomorphicity' of $End(\mathbb{Q}, \leq)$..., w.r.t. all closed $M' \leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

Our contribution...

•
$$M := \operatorname{End} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, <) = \operatorname{Emb} (\mathbb{Q}, \leq)$$

•
$$E := \mathsf{End}(\mathbb{Q}, \leq)$$

• Pol (\mathbb{Q}, \leq)

have automatic homeomorphicity

Now let's prove this.

We don't know about... Pol ($\mathbb{Q}, <$)

Disclaimer

C & M Pech proved 'automatic homeomorphicity' of $End(\mathbb{Q}, \leq)$..., w.r.t. all closed $M' \leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \underline{\aleph}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \underline{\aleph}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

then M has automatic homeomorphicity.

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

then M has automatic homeomorphicity.

We have

• $M = \operatorname{End} \left(\mathbb{Q}, < \right) \leq \operatorname{O}_{\mathbb{Q}}^{(1)}$ closed submonoid,

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

then M has automatic homeomorphicity.

We have

- $M = \operatorname{End} (\mathbb{Q}, <) \le O_{\mathbb{Q}}^{(1)}$ closed submonoid,
- grp of invertibles $G = \operatorname{Aut}(\mathbb{Q}, <) \subseteq M$ dense,

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

then M has automatic homeomorphicity.

We have

- $M = \operatorname{End} (\mathbb{Q}, <) \le O_{\mathbb{Q}}^{(1)}$ closed submonoid,
- grp of invertibles $G = \operatorname{Aut}(\mathbb{Q}, <) \subseteq M$ dense, aut homeo

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M \\ \xi(g) = g \text{ for } g \in G \end{cases} \implies \xi = \mathrm{id}_M$$

then M has automatic homeomorphicity.

We have

- $M = \operatorname{End} \left(\mathbb{Q}, < \right) \leq \operatorname{O}_{\mathbb{Q}}^{(1)}$ closed submonoid,
- grp of invertibles $G = \operatorname{Aut}(\mathbb{Q}, <) \subseteq M$ dense, aut homeo

We prove for any injective hom $\xi \colon M \hookrightarrow E$: $(\forall g \in G : \xi(g) = g) \implies (\forall f \in M : \xi(f) = f)$

Let
$$\xi \colon M \hookrightarrow E$$
 be inj monoid hom,
 $\xi(g) = g$ for $g \in G$.

Let
$$\xi \colon M \hookrightarrow E$$
 be inj monoid hom,
 $\xi(g) = g$ for $g \in G$.

• define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$

Let $\xi \colon M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$.

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$

Let $\xi \colon M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$.

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm} \exists g \in \Psi : g \circ f \in \Psi$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm} \exists g \in \Psi : g \circ f \in \Psi$ choice of Ψ only depends on the shape of $\operatorname{im}(f)$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm} \exists g \in \Psi : g \circ f \in \Psi$ choice of Ψ only depends on the shape of $\operatorname{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm} \exists g \in \Psi : g \circ f \in \Psi$ choice of Ψ only depends on the shape of $\operatorname{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

$$\implies \qquad \qquad = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f$$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\forall f \in M \exists \Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm} \exists g \in \Psi : g \circ f \in \Psi$ choice of Ψ only depends on the shape of $\operatorname{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

$$\implies g \circ \xi(f) = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f$$

- define certain $\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \subseteq M$
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\Psi \in {\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- ∀ f ∈ M∃Ψ ∈ {Γ, Γ⁺, Γ⁻, Γ[±]} ∃g ∈ Ψ: g ∘ f ∈ Ψ choice of Ψ only depends on the shape of im(f) in particular ξ(g ∘ f) = g ∘ f
- $\implies g \circ \xi(f) = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f$
- $\implies \xi(f) = f$ (for $g \in \Psi \subseteq M$ is injective)

On the way to automatic homeomorphicity for $E = \text{End}(\mathbb{Q}, \leq)$

We know...

... $M = \text{End}(\mathbb{Q}, <)$ has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

On the way to automatic homeomorphicity for $E = \text{End}(\mathbb{Q}, \leq)$

We know...

... $M = \text{End}(\mathbb{Q}, <)$ has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

What about $E = \text{End}(\mathbb{Q}, \leq)$?

On the way to automatic homeomorphicity for $E = \text{End}(\mathbb{Q}, \leq)$

We know...

 $\dots M = \text{End}(\mathbb{Q}, <)$ has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

What about $E = \text{End}(\mathbb{Q}, \leq)$?

Observations

- f ∈ E surjective ⇒
 ∀g ∈ Q^Q: f ∘ g = id_Q ⇒ g ∈ M
 i.e. right-inverse maps are embeddings
 ⇒ surjective f ∈ E are characterizable by their right-inverses.
 - trickery $\implies \forall h \in E \ \exists f \in E \ \text{surj} \ \exists g \in M : \quad h = f \circ g$

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow M$$

 $\forall g \in G \colon \xi(g) = g$ $\implies \forall f \in M \colon \xi(f) = f$

then *M* has automatic homeomorphicity.

Very slightly differing from Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$, $M \subseteq E \subseteq O_A^{(1)}$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow E$$

 $\forall g \in G \colon \xi(g) = g$ $\Rightarrow \forall f \in M \colon \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Very slightly differing from Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$, $M \subseteq E \subseteq O_A^{(1)}$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow E$$

 $\forall g \in G \colon \xi(g) = g$ $\Rightarrow \forall f \in M \colon \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Something slightly different

$$\begin{array}{l} \forall \theta \colon E \longrightarrow E' \leq \mathsf{O}_{\Omega}^{(1)} \text{ inj monoid hom, } |\Omega| = \aleph_0 \\ \text{closure of invertibles } \mathsf{Loc}_{\Omega} \ G' = \overline{G'} \subseteq \mathrm{im} \ \theta, \\ \implies \theta|_M^{\theta[M]} \colon M \longrightarrow \theta \ [M] = \overline{G'} \text{ homeomorphism} \end{array}$$

Very slightly differing from Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$, $M \subseteq E \subseteq O_A^{(1)}$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow E$$

 $\forall g \in G \colon \xi(g) = g$ $\Rightarrow \forall f \in M \colon \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Consequence

$$\begin{array}{l} \forall \theta \colon E \longrightarrow E' \leq \mathsf{O}_{\Omega}^{(1)} \text{ monoid iso, } E' \leq \mathsf{O}_{\Omega}^{(1)} \text{ closed, } |\Omega| = \aleph_{0} \\ \Rightarrow \theta|_{M}^{\theta[M]} \colon M \longrightarrow \theta[M] \text{ homeomorphism, } \theta[M] \leq \mathsf{O}_{\Omega}^{(1)} \text{ closed.} \end{array}$$

Very slightly differing from Lemma 12

- $M \leq O_A^{(1)}$ closed submonoid $(|A| = \aleph_0)$, $M \subseteq E \subseteq O_A^{(1)}$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$\forall \text{ injective hom } \xi \colon M \hookrightarrow E$$

 $\forall g \in G \colon \xi(g) = g$ $\Rightarrow \forall f \in M \colon \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Consequence

$$\begin{array}{l} \forall \theta \colon E \longrightarrow E' \leq \mathsf{O}_{\Omega}^{(1)} \text{ monoid iso, } E' \leq \mathsf{O}_{\Omega}^{(1)} \text{ closed, } |\Omega| = \aleph_{0} \\ \Rightarrow \theta|_{M}^{\theta[M]} \colon M \longrightarrow \theta\left[M\right] \text{ continuous} \end{array}$$

• $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:

$$\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ &\cong G/G_x &= \{g \circ G_x \mid g \in G\} \end{array}$$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:
- $\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ \cong G/G_x &= \{g \circ G_x \mid g \in G\} \\ \bullet \ |G/G_x| = |X| \le |\Omega| = \aleph_0 \end{array}$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:

$$\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ &\cong G/G_x &= \{g \circ G_x \mid g \in G\} \end{array}$$

• $|G/G_x| = |X| \le |\Omega| = \aleph_0$

• $G = \operatorname{Aut}(\mathbb{Q}, \leq) \subseteq E$ has strong small index property

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:

 $\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ &\cong G/G_x &= \{g \circ G_x \mid g \in G\} \end{array}$

• $|G/G_x| = |X| \le |\Omega| = \aleph_0$

• $G = \operatorname{Aut}(\mathbb{Q}, \leq) \subseteq E$ has strong small index property

 $\implies \exists C \subseteq \mathbb{Q} \text{ finite: }_{\mathsf{pointwise}} \rightarrow G_C \subseteq G_x \subseteq G_{[C] \leftarrow \mathsf{setwise}}$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:

$$\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ &\cong G/G_x &= \{g \circ G_x \mid g \in G\} \end{array}$$

•
$$|G/G_x| = |X| \le |\Omega| = \aleph_0$$

• $G = \operatorname{Aut}(\mathbb{Q}, \leq) \subseteq E$ has strong small index property

$$\implies \exists C \subseteq \mathbb{Q} \text{ finite: }_{\text{pointwise}} \rightarrow G_C \subseteq G_x \subseteq G_{[C] \leftarrow \text{setwise}}$$

•
$$G_C = G_{[C]} \implies G_x = G_{[C]}$$

- $\theta \colon E \longrightarrow E'$ monoid iso, $E' \leq O_{\Omega}^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action _._: $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: G = Aut (Q, ≤) ⊆ E, group action: g.x = (θ(g))(x)
- group orbits:

 $\begin{array}{ll} x \in \Omega \rightsquigarrow X = G.x &= \{\theta(g)(x) \mid g \in G\} \\ &\cong G/G_x &= \{g \circ G_x \mid g \in G\} \end{array}$

- $|G/G_x| = |X| \le |\Omega| = \aleph_0$
- $G = \operatorname{Aut}(\mathbb{Q}, \leq) \subseteq E$ has strong small index property
- $\implies \exists C \subseteq \mathbb{Q} \text{ finite: }_{\mathsf{pointwise}} \rightarrow G_C \subseteq G_x \subseteq G_{[C] \leftarrow \mathsf{setwise}}$
 - $G_C = G_{[C]} \implies G_x = G_{[C]}$
 - $\{\theta(g)(x) \mid g \in G\} \cong \frac{G}{G_x} = \frac{G}{G_{[C]}} \cong \{g[C] \mid g \in G\}$

Let $x \in \Omega$, $C \subseteq \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) \mid g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] \mid g \in G\} = [\mathbb{Q}]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

Let $x \in \Omega$, $C \subseteq \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) \mid g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] \mid g \in G\} = [\mathbb{Q}]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

$$\begin{array}{ll} \text{in particular:} & x=\theta(\text{id})(x)=a_{\text{id}[C]}=a_C\\ \text{action:} & g.x=\theta(g)(a_C)=a_{g[C]} & (g\in G) \end{array}$$

Let $x \in \Omega$, $C \subseteq \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) \mid g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] \mid g \in G\} = [\mathbb{Q}]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

$$\begin{array}{ll} \text{in particular:} & x=\theta(\text{id})(x)=a_{\text{id}[C]}=a_C\\ \text{action:} & g.x=\theta(g)(a_C)=a_{g[C]} & (g\in G) \end{array}$$

Identification *n*-element subsets $[\mathbb{Q}]^n \ni B \longleftrightarrow a_B \in G.x$ orbit elements $G.x = \{a_B \mid B \in [\mathbb{Q}]^n\}$

Let $x \in \Omega$, $C \subseteq \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) \mid g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] \mid g \in G\} = [\mathbb{Q}]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

$$\begin{array}{ll} \text{in particular:} & x = \theta(\operatorname{id})(x) = a_{\operatorname{id}[C]} = a_C \\ \text{action:} & g.x = \theta(g)(a_C) = a_{g[C]} \\ \end{array} \quad (g \in G) \\ \end{array}$$

Identification

n-element subsets $[\mathbb{Q}]^n \ni B \longleftrightarrow a_B \in G.x$ orbit elements $G.x = \{a_B \mid B \in [\mathbb{Q}]^n\}$

All orbits: $(\Omega_i)_{i \in I}$ $\forall i \in I$: $\Omega_i = \{ a_B^i \mid B \in [\mathbb{Q}]^{n_i} \}$ (rank $n_i \in \mathbb{N}$)

M. Behrisch, J. K. Truss, E. Vargas-García

Reconstructing the topology on monoids and clones of the

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

• $\exists h \in E \text{ idempotent}, B = im(h)$:

$$\theta(h)(a_B^i)=a_B^i$$

Extending the description of the action • $\forall f \in M \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ • $\forall f \in E \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $n_i = |B| = |f[B]|$ $\implies \theta(f)(a_B^i) = a_{f[B]}^i$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$ **1** $\exists h \in E$ idempotent, $B = \operatorname{im}(h)$: $\theta(h)(a_B^i) = a_B^i$ **2** $\forall f_1, f_2 \in E$: $f_1|_B = f_2|_B \implies \theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$

Extending the description of the action • $\forall f \in M \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ • $\forall f \in E \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $n_i = |B| = |f[B]|$ $\implies \theta(f)(a_B^i) = a_{f[B]}^i$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

∃ h ∈ E idempotent, B = im(h): $\theta(h)(a_B^i) = a_B^i$ ∀ f₁, f₂ ∈ E: f₁|_B = f₂|_B ⇒ $\theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$ $\theta(f)(a_B^i) = a_C^j \Rightarrow C ⊆ f[B]$

Extending the description of the action • $\forall f \in M \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ • $\forall f \in E \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}$: $n_i = |B| = |f[B]|$ $\implies \theta(f)(a_B^i) = a_{f[B]}^i$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

∃h ∈ E idempotent, B = im(h): $\theta(h)(a_B^i) = a_B^i$ ∀f₁, f₂ ∈ E: f₁|_B = f₂|_B ⇒ $\theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$ $\theta(f)(a_B^i) = a_C^j \implies C \subseteq f[B]$

 $E = \operatorname{End}(\mathbb{Q}, \leq)$ has automatic homeomorphicity We prove continuity and openness of $\theta \colon E \longrightarrow E'$.

M. Behrisch, J. K. Truss, E. Vargas-García Reconstructing the topology on monoids and clones of the

Automatic homeomorphicity of Pol (\mathbb{Q}, \leq)

Method

A, B sets,
$$P \leq O_A$$
, $P' \leq O_B \ \theta \colon P \longrightarrow P'$ clone hom.
If

$$\forall b \in B \exists h \in P^{(1)}, |im(h)| < \aleph_0: \qquad \theta(h)(b) = b$$

then θ is continuous.

Automatic homeomorphicity of Pol (\mathbb{Q}, \leq)

Method

A, B sets,
$$P \leq O_A$$
, $P' \leq O_B \ \theta \colon P \longrightarrow P'$ clone hom.
If

$$\forall b \in B \exists h \in P^{(1)}, |im(h)| < \aleph_0: \qquad heta(h)(b) = b$$

then θ is continuous.

Now $P = Pol(\mathbb{Q}, \leq)$
Automatic homeomorphicity of Pol (\mathbb{Q}, \leq)

Method

A, B sets, $P \leq O_A$, $P' \leq O_B \ \theta \colon P \longrightarrow P'$ clone hom. If

$$\forall b \in B \exists h \in P^{(1)}, |im(h)| < \aleph_0: \qquad heta(h)(b) = b$$

then θ is continuous.

Now $P = Pol(\mathbb{Q}, \leq)$

openness easy: *P* has all constants, use Proposition 27 of Bodirsky, Pinsker, Pongrácz

Automatic homeomorphicity of Pol (\mathbb{Q}, \leq)

Method

A, B sets, $P \leq O_A$, $P' \leq O_B \ \theta \colon P \longrightarrow P'$ clone hom. If

$$\forall b \in B \exists h \in P^{(1)}, |im(h)| < \aleph_0: \qquad heta(h)(b) = b$$

then θ is continuous.

Now $P = Pol(Q, \leq)$ openness easy: P has all constants, use Proposition 27 of Bodirsky, Pinsker, Pongrácz continuity use idempotents constructed for E+ method above