

Reconstructing the topology on monoids and clones of the rationals

Mike Behrisch^{×1} John K Truss^{*} Edith Vargas-García^{†2}

[×]Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

> [∗]Department of Pure Mathematics University of Leeds

> > †UACM Mexico City

28th May 2016 • Prague

¹ Originally supported by the Austrian Science Fund (FWF) under grant 1836-N23. ²Supported by CONACYT.

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

 $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

- $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation
- consider A as discrete space $(A, \mathfrak{P}(A))$

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

- $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation
- consider A as discrete space $(A, \mathfrak{P}(A))$
- \implies $\,A^{A^n}\,$ has product topology (pointwise convergence)

Topology on transformation monoids and clones

A a set, $n \in \mathbb{N}$.

 $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies $\,A^{A^n}\,$ has product topology (pointwise convergence)

basic open sets: $\{f \in A^{A^n} \mid f|_B = p\},\$ where $p\colon B\longrightarrow A$ partial *n*-ary, $B\subseteq A^n$ finite

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

 $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies $\,A^{A^n}\,$ has product topology (pointwise convergence)

basic open sets: $\{f \in A^{A^n} \mid f|_B = p\},\$ where $p\colon B\longrightarrow A$ partial *n*-ary, $B\subseteq A^n$ finite

•
$$
|A| = \aleph_0 \implies A^{A^n}
$$
 (ultra-)metrizable

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

 $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies $\,A^{A^n}\,$ has product topology (pointwise convergence)

basic open sets: $\{f \in A^{A^n} \mid f|_B = p\},\$ where $p\colon B\longrightarrow A$ partial *n*-ary, $B\subseteq A^n$ finite

•
$$
|A| = \aleph_0 \implies A^{A^n}
$$
 (ultra-)metrizable

Clones

$$
\digamma\subseteq O_A=\coprod_{n\in\mathbb{N}}A^{A^n}
$$

induced subspace topology

Topology on transformation monoids and clones A a set, $n \in \mathbb{N}$.

 $(f \colon A^n \longrightarrow A) \in A^{(A^n)}$ finitary operation

• consider A as discrete space $(A, \mathfrak{P}(A))$

 \implies $\,A^{A^n}\,$ has product topology (pointwise convergence)

basic open sets: $\{f \in A^{A^n} \mid f|_B = p\},\$ where $p\colon B\longrightarrow A$ partial *n*-ary, $B\subseteq A^n$ finite

$$
\bullet \ |A| = \aleph_0 \implies A^{A^n} \text{ (ultra-)metricable}
$$

Clones

$$
F\subseteq O_A=\coprod_{n\in\mathbb{N}}A^{A^n}
$$

induced subspace topology

Transformation monoids

$$
F\subseteq A^A
$$
, i.e. $n=1$

induced subspace topology

for closed transformation monoids $(=$ endomorphism monoids)

for closed clones $(=$ polymorphism clones)

for closed transformation monoids $(=$ endomorphism monoids) $M\subseteq \mathsf{O}_\mathsf{A}^{(1)}$ $A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$

for closed clones $(=$ polymorphism clones)

for closed transformation monoids $(=$ endomorphism monoids) $M\subseteq \mathsf{O}_\mathsf{A}^{(1)}$ $A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$ $\forall \varphi \colon M \longrightarrow M' \leq \mathsf{O}^{(1)}_\Omega$ $\binom{1}{2}$ M' closed, $|\Omega| = \aleph_0$ φ alg. iso $\bm J$

for closed clones $(=$ polymorphism clones)

for closed transformation monoids $(=$ endomorphism monoids) $M\subseteq \mathsf{O}_\mathsf{A}^{(1)}$ $A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$ $\forall \varphi \colon \mathit{M} \longrightarrow \mathit{M}' \leq \mathsf{O}_\Omega^{(1)} \big\} \qquad \quad \varphi \colon \mathit{M} \leq \mathit{A}^\mathit{A} \longrightarrow \mathit{M}' \leq \Omega^\Omega$ Ω M' closed, $|\Omega| = \aleph_0$ φ alg. iso $\overline{\mathcal{L}}$ \int =⇒ φ top. iso (homeomorphism)

for closed clones $(=$ polymorphism clones)

for closed transformation monoids $(=$ endomorphism monoids) $M\subseteq \mathsf{O}_\mathsf{A}^{(1)}$ $A^{(1)}$ (locally) closed transformation monoid, $|A| = \aleph_0$ $\forall \varphi \colon M \longrightarrow M' \leq \mathsf{O}^{(1)}_\Omega$ Ω M' closed, $|\Omega| = \aleph_0$ φ alg. iso \mathcal{L} $\overline{\mathcal{L}}$ \int =⇒ $\varphi\colon M\le A^A\longrightarrow M'\le\Omega^\Omega$ φ top. iso (homeomorphism)

for closed clones $(=$ polymorphism clones) $F \subseteq O_A$ (locally) closed clone, $|A| = \aleph_0$ $\forall \varphi \colon \digamma \longrightarrow \mathsf{C} \leq \mathsf{O}_\Omega$ C closed, $|\Omega| = \aleph_0$ φ alg. iso $\bigcup_{\varphi\text{ top.}}$ iso (homeomorphism) \mathcal{L} $\Big\} \implies$ $\forall n \in \mathbb{N}$ $\varphi\colon F^{(n)}\leq A^{A^n}\longrightarrow C^{(n)}\leq \Omega^{\Omega^n}$

Known examples, $|A| = \aleph_0$ • Aut (\mathbb{Q}, \lt) (Truss) (This is a group!) \bullet Aut $(A, A) = Sym(A)$ (Rabinovič), $\operatorname{\mathsf{End}}\nolimits(A, A) = \mathsf{O}^{(1)}_A$ $A^{(1)}_A$, Emb $(A, A) = \text{Inj}(A)$ (BPP)

Known examples, $|A| = \aleph_0$ • Aut (\mathbb{Q}, \langle) (Truss) (This is a group!) \bullet Aut $(A, A) = Sym(A)$ (Rabinovič), $\operatorname{\mathsf{End}}\nolimits(A, A) = \mathsf{O}^{(1)}_A$ $A^{(1)}_A$, Emb $(A, A) = \text{Inj}(A)$ (BPP) • Aut **G** (Hodges et al./Rubin), Emb G (BPP) random graph • Emb D (BPP) random directed graph $\mathsf{O}_\mathsf{A}^{(1)} \subseteq \mathsf{F} = \overline{\mathsf{F}} \leq \mathsf{O}_\mathsf{A}, \ \mathsf{e}.\mathsf{g}. \ \Big \langle \mathsf{O}_\mathsf{A}^{(1)}$ $\left(\begin{matrix} 1 \ A \end{matrix}\right)$ O_A , O_A (BPP)

Known examples, $|A| = \aleph_0$ • Aut (\mathbb{Q}, \langle) (Truss) (This is a group!) \bullet Aut $(A, A) = Sym(A)$ (Rabinovič), $\operatorname{\mathsf{End}}\nolimits(A, A) = \mathsf{O}^{(1)}_A$ $A^{(1)}_A$, Emb $(A, A) = \text{Inj}(A)$ (BPP) • Aut **G** (Hodges et al./Rubin), Emb G (BPP) random graph • Emb D (BPP) random directed graph $\mathsf{O}_\mathsf{A}^{(1)} \subseteq \mathsf{F} = \overline{\mathsf{F}} \leq \mathsf{O}_\mathsf{A}, \ \mathsf{e}.\mathsf{g}. \ \Big \langle \mathsf{O}_\mathsf{A}^{(1)}$ $\left(\begin{matrix} 1 \ A \end{matrix}\right)$ O_A , O_A (BPP) • Pol G (BPP) random graph

Known examples, $|A| = \aleph_0$ • Aut (\mathbb{Q}, \lt) (Truss) (This is a group!) \bullet Aut $(A, A) = Sym(A)$ (Rabinovič), $\operatorname{\mathsf{End}}\nolimits(A, A) = \mathsf{O}^{(1)}_A$ $A^{(1)}_A$, Emb $(A, A) = \text{Inj}(A)$ (BPP) • Aut **G** (Hodges et al./Rubin), Emb G (BPP) random graph • Emb D (BPP) random directed graph $\mathsf{O}_\mathsf{A}^{(1)} \subseteq \mathsf{F} = \overline{\mathsf{F}} \leq \mathsf{O}_\mathsf{A}, \ \mathsf{e}.\mathsf{g}. \ \Big \langle \mathsf{O}_\mathsf{A}^{(1)}$ $\left(\begin{matrix} 1 \ A \end{matrix}\right)$ O_A , O_A (BPP) • Pol G (BPP) random graph \bullet H (BPP) Horn clone

Our contribution. . .

$$
\bullet\ \mathit{M}:=\mathsf{End}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},\leq\right)
$$

- $E :=$ End (Q, \leq)
- Pol (Q, \leq)

have automatic homeomorphicity

Our contribution. . .

$$
\bullet\ \mathit{M}:=\mathsf{End}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},\leq\right)
$$

- \bullet $E :=$ End (\mathbb{Q}, \leq)
- Pol (Q, \leq)

have automatic homeomorphicity

Disclaimer C & M Pech proved 'automatic homeomorphicity' of $End(Q, \leq)$. . .

Our contribution. . .

$$
\bullet\ \mathit{M}:=\mathsf{End}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},\leq\right)
$$

- \bullet $E :=$ End (\mathbb{Q}, \leq)
- Pol (Q, \leq)

have automatic homeomorphicity

Disclaimer C & M Pech proved 'automatic homeomorphicity' of $End(Q, \leq)$...w.r.t. all closed $M'\leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

Our contribution. . .

$$
\bullet\ \mathit{M}:=\mathsf{End}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},\leq\right)
$$

- \bullet $E :=$ End (\mathbb{Q}, \leq)
- \bullet Pol(\mathbb{Q}, \leq)

have automatic homeomorphicity

We don't know about. $Pol(Q, <)$

Disclaimer

C & M Pech proved 'automatic homeomorphicity' of $End(Q, \leq)$...w.r.t. all closed $M'\leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

Our contribution. . .

$$
\bullet\ \mathit{M}:=\mathsf{End}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},<\right)=\mathsf{Emb}\left(\mathbb{Q},\leq\right)
$$

$$
\bullet\ \mathsf{E} \mathrel{\mathop:}= \mathsf{End}\,(\mathbb{Q},\leq)
$$

 \bullet Pol(\mathbb{Q}, \leq)

have automatic homeomorphicity

Now let's prove this.

We don't know about. $Pol(Q, <)$

Disclaimer

C & M Pech proved 'automatic homeomorphicity' of $End(Q, \leq)$...w.r.t. all closed $M'\leq O_{\Omega}^{(1)}$ with finitely many weak orbits.

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq \mathsf{O}_A^{(1)}$ $A^{(1)}_A$ closed submonoid $(|A| = \underline{N}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

Bodirsky, Pinsker, Pongrácz, Lemma 12

•
$$
M \leq O_A^{(1)}
$$
 closed submonoid $(|A| = N_0)$,

- group of invertibles $G \leq M$ dense: $G = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
\n $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

Bodirsky, Pinsker, Pongrácz, Lemma 12

•
$$
M \leq O_A^{(1)}
$$
 closed submonoid $(|A| = N_0)$,

- group of invertibles $G \leq M$ dense: $G = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
 $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

then M has automatic homeomorphicity.

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq \mathsf{O}_A^{(1)}$ $A^{(1)}_A$ closed submonoid $(|A| = \underline{N}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
\n $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

then M has automatic homeomorphicity.

We have

 $M = \mathsf{End}\left(\mathbb{Q}, < \right) \leq \mathsf{O}^{(1)}_\mathbb{Q}$ closed submonoid,

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq \mathsf{O}_A^{(1)}$ $A^{(1)}_A$ closed submonoid $(|A| = \underline{N}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
\n $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

then M has automatic homeomorphicity.

We have

- $M = \mathsf{End}\left(\mathbb{Q}, < \right) \leq \mathsf{O}^{(1)}_\mathbb{Q}$ closed submonoid,
- **•** grp of invertibles $G = \text{Aut}(\mathbb{Q}, \lt) \subseteq M$ dense,

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq \mathsf{O}_A^{(1)}$ $A^{(1)}_A$ closed submonoid $(|A| = \underline{N}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
\n $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

then M has automatic homeomorphicity.

We have

- $M = \mathsf{End}\left(\mathbb{Q}, < \right) \leq \mathsf{O}^{(1)}_\mathbb{Q}$ closed submonoid,
- **•** grp of invertibles $G = Aut(Q, \lt) \subseteq M$ dense, aut homeo

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M \leq \mathsf{O}_A^{(1)}$ $A^{(1)}_A$ closed submonoid $(|A| = \underline{N}_0)$,
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
\n $\xi(g) = g$ for $g \in G$ $\Longrightarrow \xi = id_M$

then M has automatic homeomorphicity.

We have

- $M = \mathsf{End}\left(\mathbb{Q}, < \right) \leq \mathsf{O}^{(1)}_\mathbb{Q}$ closed submonoid,
- grp of invertibles $G = Aut(Q, \langle) \subseteq M$ dense, aut homeo

We prove for any injective hom $\xi \colon M \hookrightarrow E$: $(\forall g \in G : \xi(g) = g) \implies (\forall f \in M : \xi(f) = f)$

Let ξ : $M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$.

Let ξ : $M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$. define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M

Let ξ : $M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$.

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$

Let ξ : $M \hookrightarrow E$ be inj monoid hom, $\xi(g) = g$ for $g \in G$.

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\bullet \forall f \in M$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall f \in M \exists \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$ choice of Ψ only depends on the shape of $\text{im}(f)$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$ choice of Ψ only depends on the shape of $\text{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

Let
$$
\xi \colon M \hookrightarrow E
$$
 be inj monoid hom,
 $\xi(g) = g$ for $g \in G$.

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$ choice of Ψ only depends on the shape of $\text{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

$$
\implies \qquad = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f
$$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$ choice of Ψ only depends on the shape of $\text{im}(f)$ in particular $\xi(g \circ f) = g \circ f$

$$
\implies g \circ \xi(f) = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f
$$

- define certain Γ $,$ Γ $^+,$ Γ $^-$, Γ $^{\pm}$ \subseteq M
- with trickery: $\xi(f) = f$ for $f \in \Psi$, $\quad \Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm\}$
- $\Psi \circ \Psi \subseteq \Psi$ for $\Psi \in \{\Gamma, \Gamma^+, \Gamma^-, \Gamma^\pm \}$
- $\forall\,f\in M\,\exists\,\mathsf{V}\in\{\mathsf{\Gamma},\mathsf{\Gamma}^+,\mathsf{\Gamma}^-,\mathsf{\Gamma}^\pm\}\,\,\exists\,g\in\mathsf{V}\colon\quad g\circ f\in\mathsf{V}$ choice of Ψ only depends on the shape of $\text{im}(f)$ in particular $\xi(g \circ f) = g \circ f$
- $\implies g \circ \xi(f) = \xi(g) \circ \xi(f) = \xi(g \circ f) = g \circ f$
- $\implies \xi(f) = f$ (for $g \in \Psi \subset M$ is injective)

On the way to automatic homeomorphicity for $E =$ End $(\overline{\mathbb{Q}}, \leq)$

We know...

 \ldots $M =$ End (Q, \lt) has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

On the way to automatic homeomorphicity for $E =$ End $(\overline{\mathbb{Q}}, \leq)$

We know...

 \ldots $M =$ End (Q, \lt) has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

What about $E =$ End (\mathbb{Q}, \leq) ?

On the way to automatic homeomorphicity for $E =$ End $(\overline{\mathbb{Q}}, \leq)$

We know...

... $M =$ End $(Q, <)$ has automatic homeomorphicity by [Bodirsky, Pinsker, Pongrácz, Lemma 12].

What about $E =$ End (\mathbb{Q}, \leq) ?

Observations

\n- \n
$$
f \in E
$$
 surjective \implies \n $\forall g \in \mathbb{Q}^{\mathbb{Q}}$: $f \circ g = \text{id}_{\mathbb{Q}} \implies g \in M$ \n
\n- \n i.e. right-inverse maps are embeddings\n
	\n- \n $\text{surjective } f \in E$ are characterizable by their right-inverses.\n
		\n- \n $\text{trickery} \implies \forall h \in E \exists f \in E \text{ surj } \exists g \in M: \quad h = f \circ g$ \n
		\n\n
	\n

Bodirsky, Pinsker, Pongrácz, Lemma 12

- $M\leq\mathsf{O}^{(1)}_A$ $A^{(1)}_A$ closed submonoid $(|A| = \aleph_0)$
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom $\xi: M \hookrightarrow M$
 $\forall g \in G : \xi(g) = g$ $\implies \forall f \in M : \xi(f) = f$

then M has automatic homeomorphicity.

Very slightly differing from Lemma 12

- $M\leq\mathsf{O}^{(1)}_A$ $\mathcal{A}^{(1)}_A$ closed submonoid $(|A|=\aleph_0)$, $M\subseteq E\subseteq \mathsf{O}^{(1)}_A$ A
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom ξ : $M \hookrightarrow E$
\n $\forall g \in G : \xi(g) = g$ $\implies \forall f \in M : \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Very slightly differing from Lemma 12

- $M\leq\mathsf{O}^{(1)}_A$ $\mathcal{A}_A^{(1)}$ closed submonoid $(|A|=\aleph_0)$, $M\subseteq E\subseteq \mathsf{O}_A^{(1)}$ A
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom ξ : $M \hookrightarrow E$
\n $\forall g \in G : \xi(g) = g$ $\implies \forall f \in M : \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Something slightly different

$$
\forall \theta \colon E \longrightarrow E' \leq O_{\Omega}^{(1)} \text{ inj monoid hom, } |\Omega| = \aleph_0
$$

closure of invertibles $\text{Loc}_{\Omega} G' = \overline{G'} \subseteq \text{ im } \theta$,
 $\implies \theta|_{M}^{\theta[M]} : M \longrightarrow \theta[M] = \overline{G'}$ homeomorphism

Very slightly differing from Lemma 12

- $M\leq\mathsf{O}^{(1)}_A$ $\mathcal{A}^{(1)}_A$ closed submonoid $(|A|=\aleph_0)$, $M\subseteq E\subseteq \mathsf{O}^{(1)}_A$ A
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom ξ : $M \hookrightarrow E$
\n $\forall g \in G : \xi(g) = g$ $\implies \forall f \in M : \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Consequence

 $\forall \theta \colon E \longrightarrow E' \leq \mathsf{O}_\Omega^{(1)}$ monoid iso, $E' \leq \mathsf{O}_\Omega^{(1)}$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$ $\Rightarrow \theta|_{M}^{\theta[M]} \colon M \longrightarrow \theta\left[M\right]$ homeomorphism, $\theta\left[M\right] \leq \mathrm{O}^{(1)}_{\Omega}$ $_{\Omega}^{(1)}$ closed.

Very slightly differing from Lemma 12

- $M\leq\mathsf{O}^{(1)}_A$ $\mathcal{A}^{(1)}_A$ closed submonoid $(|A|=\aleph_0)$, $M\subseteq E\subseteq \mathsf{O}^{(1)}_A$ A
- group of invertibles $G \leq M$ dense: $\overline{G} = M$
- G has automatic homeomorphicity

If
$$
\forall
$$
 injective hom ξ : $M \hookrightarrow E$
\n $\forall g \in G : \xi(g) = g$ $\implies \forall f \in M : \xi(f) = f$

then M has something slightly different than automatic homeomorphicity.

Consequence

$$
\forall \theta \colon E \longrightarrow E' \leq O_{\Omega}^{(1)} \text{ monoid iso, } E' \leq O_{\Omega}^{(1)} \text{ closed, } |\Omega| = \aleph_0
$$

\n
$$
\Rightarrow \theta|_{M}^{\theta[M]} \colon M \longrightarrow \theta \left[M\right] \text{ continuous}
$$

 $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $\therefore E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action \therefore $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $\therefore E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:

$$
x \in \Omega \rightsquigarrow X = G.x \qquad = \{ \theta(g)(x) \mid g \in G \}
$$

$$
\cong G/G_x \qquad = \{ g \circ G_x \mid g \in G \}
$$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $E: E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:
- $x \in \Omega \rightsquigarrow X = G.x$ = { $\theta(g)(x) | g \in G$ } $\cong G/G_{r} = \{g \circ G_{r} \mid g \in G\}$ \bullet $|G/G_{r}| = |X| < |\Omega| = \aleph_{0}$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $E: E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:
	- $x \in \Omega \rightsquigarrow X = G.x$ = { $\theta(g)(x) | g \in G$ } $\cong G/G_{v} = \{g \circ G_{v} \mid g \in G\}$

 $|G/G_{r}| = |X| < |\Omega| = \aleph_0$

 $G = Aut(Q, \leq) \subset E$ has strong small index property

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $\therefore E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:

 $x \in \Omega \rightsquigarrow X = G.x$ = { $\theta(g)(x) | g \in G$ } $\cong G/G_{v} = \{g \circ G_{v} \mid g \in G\}$

 $|G/G_{r}| = |X| < |\Omega| = \aleph_0$

• $G = Aut(Q, \leq) \subseteq E$ has strong small index property

 $\Rightarrow \exists C \subseteq \mathbb{Q}$ finite: _{pointwise→} $G_C \subseteq G_{X} \subseteq G_{[C] \leftarrow \text{setwise}}$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action $\therefore E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:

$$
x \in \Omega \rightsquigarrow X = G.x \qquad = \{ \theta(g)(x) \mid g \in G \}
$$

$$
\cong G/G_x \qquad = \{ g \circ G_x \mid g \in G \}
$$

 \circ $|G/G_{v}| = |X| < |\Omega| = \aleph_0$

 $G = Aut(Q, \leq) \subset E$ has strong small index property

$$
\implies \ \exists \mathit{C} \subseteq \mathbb{Q} \textrm{ finite: }_{\textrm{pointwise} \rightarrow} \mathit{G}_{\mathit{C}} \subseteq \mathit{G}_{\mathit{x}} \subseteq \mathit{G}_{[\mathit{C}] \leftarrow \textrm{setwise}}
$$

 $G_C = G_{[C]} \implies G_x = G_{[C]}$

- $\theta\colon E\longrightarrow E'$ monoid iso, $E'\leq\mathsf{O}^{(1)}_\Omega$ $\Omega^{(1)}$ closed, $|\Omega| = \aleph_0$
- faithful monoid action \therefore $E \times \Omega \longrightarrow \Omega$ $f.x := (\theta(f))(x)$
- restricting to automorphisms: $G = Aut(Q, \leq) \subset E$, group action: $g.x = (\theta(g))(x)$
- **o** group orbits:

 $x \in \Omega \rightsquigarrow X = G.x$ = { $\theta(g)(x) | g \in G$ } $\cong G/G_{v} = \{g \circ G_{v} \mid g \in G\}$

 $|G/G_{r}| = |X| < |\Omega| = \aleph_0$

• $G = \text{Aut}(\mathbb{Q}, \leq) \subseteq E$ has strong small index property

$$
\implies \ \exists \, \mathcal{C} \subseteq \mathbb{Q} \ \mathsf{finite} \colon_{\mathsf{pointwise} \to} \mathcal{G}_{\mathcal{C}} \subseteq \mathcal{G}_{\mathsf{x}} \subseteq \mathcal{G}_{[\mathcal{C}] \leftarrow \mathsf{setwise}}
$$

- $G_C = G_{|C|} \implies G_x = G_{|C|}$
- $\{\theta(g)(x) | g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g [C] | g \in G\}$

Let $x \in \Omega$, $C \subset \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) | g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] | g \in G\} = [Q]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

Let $x \in \Omega$, $C \subset \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) | g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] | g \in G\} = [Q]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

in particular:

\n
$$
x = \theta(\text{id})(x) = a_{\text{id}[C]} = a_C
$$
\naction:

\n
$$
g.x = \theta(g)(a_C) = a_{g[C]} \qquad (g \in G)
$$

Let $x \in \Omega$, $C \subset \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) | g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] | g \in G\} = [Q]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

in particular:
$$
x = \theta(\text{id})(x) = a_{\text{id}[C]} = a_C
$$

action: $g.x = \theta(g)(a_C) = a_{g[C]}$ $(g \in G)$

Identification

n-element subsets $[Q]^n \ni B \longleftrightarrow a_B \in G.x$ orbit elements $G.x = \{ a_B | B \in [Q]^n \}$

Let $x \in \Omega$, $C \subset \mathbb{Q}$, *n*-element set determined by G_x . $\{\theta(g)(x) | g \in G\} \cong G/G_x = G/G_{[C]} \cong \{g[C] | g \in G\} = [Q]^n$ $a_{g[C]} := \theta(g)(x) \leftrightarrow g \circ G_x = g \circ G_{[C]} \mapsto g[C]$

in particular:
$$
x = \theta(\text{id})(x) = a_{\text{id}[C]} = a_C
$$

\naction: $g.x = \theta(g)(a_C) = a_{g[C]}$ $(g \in G)$

Identification

n-element subsets $[Q]^n \ni B \longleftrightarrow a_B \in G.x$ orbit elements $G.x = \{ a_B | B \in [Q]^n \}$

All orbits: $(\Omega_i)_{i\in I}$ $\forall i \in I: \qquad \Omega_i = \left\{ a_B^i \mid B \in [\mathbb{Q}]^{n_i} \right\} \qquad (\text{rank } n_i \in \mathbb{N})$

M. Behrisch, J. K. Truss, E. Vargas-García Reconstructing the topology on monoids and clones of the

Extending the description of the action $\forall f \in M \forall i \in I \ \forall B \in [Q]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ $\forall f \in E \forall i \in I \forall B \in [Q]^{n_i}: \qquad n_i = |B| = |f[B]|$ $\implies \theta(f)(a^i_B) = a^i_{f[B]}$

Extending the description of the action $\forall f \in M \forall i \in I \ \forall B \in [Q]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ $\forall f \in E \forall i \in I \forall B \in [Q]^{n_i}: \qquad n_i = |B| = |f[B]|$ $\implies \theta(f)(a^i_B) = a^i_{f[B]}$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

 \bigcirc $\exists h \in E$ idempotent, $B = \text{im}(h)$:

$$
\theta(h)(a_B^i) = a_B^i
$$

Extending the description of the action $\forall f \in M \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}: \qquad \theta(f)(a_B^i) = a_{f[B]}^i$ $\forall f \in E \forall i \in I \forall B \in [Q]^{n_i}: \qquad n_i = |B| = |f[B]|$ $\implies \theta(f)(a^i_B) = a^i_{f[B]}$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

 \bigcirc $\exists h \in E$ idempotent, $B = \text{im}(h)$: $\binom{i}{B} = a_B^i$ $\mathbf{P} \;\; \forall f_1,f_2 \in E: \qquad \quad f_1|_B = f_2|_B \implies \theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$

Extending the description of the action $\forall f \in M \forall i \in I \forall B \in [\mathbb{Q}]^{n_i}: \qquad \theta(f)(a_B^i) = a_{f[B]}^i$ $\forall f \in E \forall i \in I \forall B \in [Q]^{n_i}: \qquad n_i = |B| = |f[B]|$ $\implies \theta(f)(a^i_B) = a^i_{f[B]}$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

 \bigcirc $\exists h \in E$ idempotent, $B = \text{im}(h)$: $\binom{i}{B} = a_B^i$ $\mathbf{P} \;\; \forall f_1,f_2 \in E: \qquad \quad f_1|_B = f_2|_B \implies \theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$ $\theta(f)(a^i_B) = a^j_C \implies C \subseteq f[B]$

Extending the description of the action $\forall f \in M \forall i \in I \ \forall B \in [Q]^{n_i}$: $\theta(f)(a_B^i) = a_{f[B]}^i$ $\forall f \in E \forall i \in I \forall B \in [Q]^{n_i}: \qquad n_i = |B| = |f[B]|$ $\implies \theta(f)(a^i_B) = a^i_{f[B]}$

For general $f \in E$, $i \in I$, $B \in [\mathbb{Q}]^{n_i}$

 \bigcirc $\exists h \in E$ idempotent, $B = \text{im}(h)$: $\binom{i}{B} = a_B^i$ $\mathbf{P} \;\; \forall f_1,f_2 \in E: \qquad \quad f_1|_B = f_2|_B \implies \theta(f_1)(a_B^i) = \theta(f_2)(a_B^i)$ $\theta(f)(a^i_B) = a^j_C \implies C \subseteq f[B]$

 $E =$ End ($\mathbb{Q},$ <) has automatic homeomorphicity We prove continuity and openness of $\theta: E \longrightarrow E'.$

M. Behrisch, J. K. Truss, E. Vargas-García Reconstructing the topology on monoids and clones of the

Automatic homeomorphicity of Pol (Q, \leq)

Method

A, B sets,
$$
P \le O_A
$$
, $P' \le O_B \theta$: $P \longrightarrow P'$ clone hom.
If

$$
\forall b \in B \, \exists \, h \in P^{(1)}, |\mathsf{im}(h)| < \aleph_0: \qquad \theta(h)(b) = b
$$

then θ is continuous.

Automatic homeomorphicity of Pol (Q, \leq)

Method

A, B sets,
$$
P \le O_A
$$
, $P' \le O_B \theta$: $P \longrightarrow P'$ clone hom.
If

$$
\forall b \in B \, \exists \, h \in P^{(1)}, |\mathsf{im}(h)| < \aleph_0 \colon \qquad \theta(h)(b) = b
$$

then θ is continuous.

Now $P =$ Pol (Q, \leq)
Automatic homeomorphicity of Pol (\mathbb{Q}, \leq)

Method

A, B sets,
$$
P \le O_A
$$
, $P' \le O_B \theta$: $P \longrightarrow P'$ clone hom.
If

$$
\forall b \in B \, \exists \, h \in P^{(1)}, |\mathsf{im}(h)| < \aleph_0: \qquad \theta(h)(b) = b
$$

then θ is continuous.

Now $P =$ Pol (Q, \leq)

openness easy: P has all constants, use Proposition 27 of Bodirsky, Pinsker, Pongrácz

Automatic homeomorphicity of Pol (Q, \leq)

Method

A, B sets,
$$
P \le O_A
$$
, $P' \le O_B \theta$: $P \longrightarrow P'$ clone hom.
If

$$
\forall b \in B \ \exists \ h \in P^{(1)}, |\mathsf{im}(h)| < \aleph_0: \qquad \theta(h)(b) = b
$$

then θ is continuous.

Now $P =$ Pol (Q, \leq) openness easy: P has all constants, use Proposition 27 of Bodirsky, Pinsker, Pongrácz continuity use idempotents constructed for E $+$ method above