Congruence lattices forcing nilpotency

Erhard Aichinger

Institute for Algebra Johannes Kepler University Linz, Austria

May 2016, AAA92

Supported by the Austrian Science Fund (FWF) : P24077

We are given the isomorphism class of the congruence lattice of an algebra. Must the algebra be

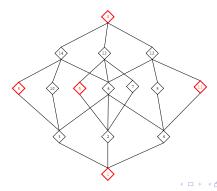
- abelian,
- supernilpotent,
- nilpotent,
- solvable?

4 A N

Classic results: \mathbb{M}_3 as a sublattice

Theorem

Let **A** be an algebra in a cm variety. Assume that $Con(\mathbf{A})$ has a (0, 1)-sublattice isomorphic to \mathbb{M}_3 . Then **A** is abelian, and hence polynomially equivalent to a module over a ring.



Let **A** be an algebra in a cm variety. Assume that Con(A) has a (0, 1)-sublattice \mathbb{L} of finite height that is simple, complemented, and has at least 3 elements. Then **A** is abelian.

Theorem (cf. [Hobby and McKenzie, 1988, Theorem 7.7])

Let **A** be a finite algebra in a cm variety. If Con(A) has no homomorphic image isomorphic to \mathbb{B}_2 , then **A** is solvable.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem [Freese and McKenzie, 1987]

Let **A** be an algebra in a cm variety. For $\alpha, \beta \in \text{Con}(\mathbf{A})$, we define the commutator $[\alpha, \beta] := \dots$. Then $\mathbf{L} := (\text{Con}(\mathbf{A}), \lor, \land, [., .])$ satisfies

$$[x,y] \approx [y,x], \ [x,y] \leq x \wedge y, \ [\bigvee_{i \in I} x_i, y] \approx \bigvee_{i \in I} [x_i, y].$$

Image: A matrix and a matrix

Definition [Czelakowski, 2008]

 $\textbf{L}=(\mathbb{L},\vee,\wedge,[.,.])$ is a *commutator lattice* if (\mathbb{L},\vee,\wedge) is a complete lattice, and L satisfies

$$[x,y] \approx [y,x], \ [x,y] \leq x \wedge y, \ [\bigvee_{i \in I} x_i, y] \approx \bigvee_{i \in I} [x_i, y].$$

Examples of [.,.]

- \mathbb{L} complete lattice. [x, y] := 0 for all $x, y \in \mathbb{L}$.
- \mathbb{L} finite distributive lattice. $[x, y] := x \land y$ for all $x, y \in \mathbb{L}$.

Image: A matrix and a matrix

A residuation operation

$$(x:y) = \bigvee \{z \mid [z,y] \le x\} \text{ for all } x, y \in \mathbb{L}.$$

Think of (x : y) as the *centralizer of y over x*.

Theorem (cf. [Czelakowski, 2008])

Let L be a commutator lattice. Then we have

$$(\bigwedge_{i\in I} x_i: y) \approx \bigwedge_{i\in I} (x_i: y), \quad (x: y) \ge x,$$

$$(x: \bigvee_{i\in I} y_i) \approx \bigwedge_{i\in I} (x: y_i), \quad (x: x) \approx 1, \quad (x: (x: y)) \ge y.$$

Image: Image:

Lemma

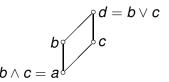
Let \mathbb{L} be a commutator lattice. Let $a, b, c, d \in \mathbb{L}$ such that a < b, c < d, and $\mathbb{I}[a, b] \iff \mathbb{I}[c, d]$. Then (a : b) = (c : d) and $([b, b] \le a \Leftrightarrow [d, d] \le c)$.

Proof:

$$(a:b) = (b \land c:b) = (b:b) \land (c:b) = (c:b) = (c:b) \land (c:c) = (c:b \lor c) = (c:d).$$

$$\Rightarrow : [d, d] = [b \lor c, b \lor c] = \\ [b, b] \lor [b, c] \lor [c, c] \le a \lor c \lor c = c.$$

 $\Leftarrow: [b,b] \leq [d,d] \leq c \text{ and } [b,b] \leq b,$ hence $[b,b] \leq b \land c = a.$



▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

The largest commutator operation

Definition [Czelakowski, 2008]

Let \mathbb{L} be a complete lattice. For $x, y \in \mathbb{L}$ we define

$$\lceil x,y\rceil := \bigvee_{j\in J} [x,y]_j,$$

where $\{[.,.]_j | j \in J\}$ is the set of all binary operations satisfying $[x, y] \approx [y, x], [x, y] \leq x \land y$, and $[\bigvee_{i \in I} x_i, y] \approx \bigvee_{i \in I} [x_i, y]$.

Definition

Let \mathbb{L} be a complete lattice. Let $\gamma_1 = \lambda_1 := 1$, $\gamma_{n+1} := \lceil \gamma_n, \gamma_n \rceil_{\mathbb{L}}$ and $\lambda_{n+1} := \lceil 1, \lambda_n \rceil$ for $n \in \mathbb{N}$.

- \mathbb{L} forces abelian type if [1, 1] = 0.
- \mathbb{L} forces nilpotent type if $\exists n \in \mathbb{N} : \lambda_n = 0$.
- \mathbb{L} forces solvable type if $\exists n \in \mathbb{N} : \gamma_n = 0$.

Theorem ($\mathbb{L} \leq_{0,1} \mathbb{K}$)

Let \mathbb{L} be a complete lattice, and let \mathbb{K} be a complete lattice such that \mathbb{L} is a complete (0, 1)-sublattice of \mathbb{K} .

If $\mathbb L$ forces abelian, nilpotent, or solvable type, then so does $\mathbb K.$

Theorem ($\mathbb{L} \twoheadrightarrow \mathbb{K}$)

Let $\mathbb L$ be a complete lattice, and let $\mathbb K$ be a complete

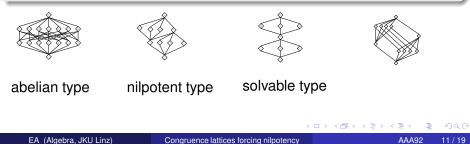
(0, 1)-homomorphic image of \mathbb{L} .

If $\mathbb L$ forces abelian, nilpotent, or solvable type, then so does $\mathbb K.$

Image: Image:

Let ${\mathbb L}$ be a modular lattice of finite height. Then

- L forces abelian type ⇐ L has a (0, 1)-sublattice with more than 2 elements that is simple and complemented.
- \mathbb{L} forces solvable type $\Leftrightarrow \mathbb{B}_2$ is not a homomorphic image of \mathbb{L} .
- L forces nilpotent type ⇐ for all α ≺ β ∈ L :
 V{η ∈ L | η is meet irreducible and I[α, β] ↔ I[η, η⁺]} = 1.



Let **A** be an algebra in a cm variety. If $Con(\mathbf{A})$ has a complete (0, 1)-sublattice \mathbb{L} of finite height such that \mathbb{B}_2 is not a homomorphic image of \mathbb{L} , then **A** is solvable.

Lemma

Let **A** be such that Con(**A**) is a modular lattice of finite height with \mathbb{B}_2 as a homomorphic image. Then there is [.,.] such that $(Con(\mathbf{A}), \lor, \land, [.,.])$ is a commutator lattice with $\alpha \in Con(\mathbf{A})$ such that $\alpha \neq 0$ and $[\alpha, \alpha] = \alpha$.

Question

Can we realize this [.,.] as the commutator operation of an expansion of **A**?

Let **A** be an algebra in a cm variety such that Con(A) is of finite height and has \mathbb{B}_2 as a homomorphic image. Let

 $\mathbf{A}^{c} := (A, Pol(Con(\mathbf{A}))).$

Then $Con(\mathbf{A}) = Con(\mathbf{A}^c)$ and \mathbf{A}^c is not solvable.

Definition

Let \mathbb{L} be a complete lattice. For $\alpha \prec \beta \in \mathbb{L}$, we define

$$\gamma(\alpha,\beta) := \bigvee \{\eta \in \mathbb{L} \mid \eta \text{ is m.i. and } \mathbb{I}[\eta,\eta^+] \nleftrightarrow \mathbb{I}[\alpha,\beta] \}.$$

Theorem

Let **A** be an algebra in a cm variety. Assume that $Con(\mathbf{A})$ has a complete (0, 1)-sublattice \mathbb{L} of finite height such that for all $\alpha, \beta \in \mathbb{L}$ with $\alpha \prec \beta$, we have $\gamma(\alpha, \beta) = 1$. Then **A** is nilpotent.

Image: A matrix and a matrix

Let **A** be a finite expanded group, and let $\alpha, \beta \in \text{Con}(\mathbf{A})$ be such that $\alpha \prec \beta$. Then the centralizer $(\alpha : \beta)_{\mathbf{A}^c}$ of β over α in \mathbf{A}^c is $\gamma(\alpha, \beta)$.

Corollary

Let **A** be a finite expanded group. Then \mathbf{A}^c is nilpotent \Leftrightarrow for all $\alpha, \beta \in \operatorname{Con}(\mathbf{A}) : (\alpha \prec \beta \Rightarrow \gamma(\alpha, \beta) = \mathbf{1}_A).$

(日) (同) (日) (日) (日)

Missing Theorem: lattice side, abelian

Let $\mathbb L$ be a finite lattice. Then $\mathbb L$ forces abelian type if and only if $\mathbb L$ satisfies <code>Missing Condition 1</code>.

Missing Theorem: algebra side, abelian

Let **A** be a finite algebra in a cp variety. Then A^c is abelian if and only if Con(**A**) satisfies Missing Condition 2 (or 1).

Conjecture: lattice side, nilpotent

Let \mathbb{L} be a finite modular lattice. Then \mathbb{L} forces nilpotent type $\Leftrightarrow \gamma(\alpha, \beta) = 1$ for all $\alpha \prec \beta$.

Remarks: \Leftarrow is proved. \Rightarrow is true if \mathbb{L} is the congruence lattice of a finite expanded group **A**. Then the commutator operation $[.,.]_{\mathbf{A}^c}$ of \mathbf{A}^c is a lower bound for $[.,.]_{\mathbb{L}}$.

Conjecture: algebra side, nilpotent

Let **A** be an algebra in a cm variety with Con(**A**) of finite height. Then \mathbf{A}^c is nilpotent $\Leftrightarrow \gamma(\alpha, \beta) = 1$ for all $\alpha \prec \beta \in \text{Con}(\mathbf{A})$.

 \Leftarrow is proved. \Rightarrow is true if **A** is a finite expanded group.

Czelakowski, J. (2008).

Additivity of the commutator and residuation. *Rep. Math. Logic*, (43):109–132.

Freese, R. and McKenzie, R. N. (1987).

Commutator Theory for Congruence Modular varieties, volume 125 of London Math. Soc. Lecture Note Ser. Cambridge University Press.

Hobby, D. and McKenzie, R. (1988).

The structure of finite algebras, volume 76 of Contemporary mathematics. American Mathematical Society.

・ロト ・ 四ト ・ ヨト ・ ヨト

EA (Algebra, JKU Linz)

Congruence lattices forcing nilpotency

■ ► ■ のへへ
AAA92 19/19

イロト イロト イヨト イヨト