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Guiding questions

We are given the isomorphism class of the congruence lattice of an

algebra. Must the algebra be

abelian,

supernilpotent,

nilpotent,

solvable?
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Classic results: M3 as a sublattice

Theorem

Let A be an algebra in a cm variety. Assume that Con(A) has a

(0,1)-sublattice isomorphic to M3.

Then A is abelian, and hence polynomially equivalent to a module over

a ring.
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Classic results

Theorem

Let A be an algebra in a cm variety. Assume that Con(A) has a

(0,1)-sublattice L of finite height that is simple, complemented, and

has at least 3 elements.

Then A is abelian.

Theorem (cf. [Hobby and McKenzie, 1988, Theorem 7.7])

Let A be a finite algebra in a cm variety. If Con(A) has no

homomorphic image isomorphic to B2, then A is solvable.
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Commutators

Theorem [Freese and McKenzie, 1987]

Let A be an algebra in a cm variety. For α, β ∈ Con(A), we define the

commutator [α, β] := . . ..

Then L := (Con(A),∨,∧, [., .]) satisfies

[x , y ] ≈ [y , x ], [x , y ] ≤ x ∧ y , [
∨

i∈I

xi , y ] ≈
∨

i∈I

[xi , y ].
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Definition of commutator lattices

Definition [Czelakowski, 2008]

L = (L,∨,∧, [., .]) is a commutator lattice if (L,∨,∧) is a complete

lattice, and L satisfies

[x , y ] ≈ [y , x ], [x , y ] ≤ x ∧ y , [
∨

i∈I

xi , y ] ≈
∨

i∈I

[xi , y ].

Examples of [., .]

L complete lattice. [x , y ] := 0 for all x , y ∈ L.

L finite distributive lattice. [x , y ] := x ∧ y for all x , y ∈ L.
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Properties of the commutator operation

A residuation operation

(x : y) =
∨
{z ||| [z, y ] ≤ x} for all x , y ∈ L.

Think of (x : y) as the centralizer of y over x .

Theorem (cf. [Czelakowski, 2008])

Let L be a commutator lattice. Then we have

(
∧

i∈I

xi : y) ≈
∧

i∈I

(xi : y), (x : y) ≥ x ,

(x :
∨

i∈I

yi) ≈
∧

i∈I

(x : yi), (x : x) ≈ 1, (x : (x : y)) ≥ y .
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Properties of the commutator operation

Lemma

Let L be a commutator lattice. Let a,b, c,d ∈ L such that a < b, c < d ,

and I[a,b] ! I[c,d ].
Then (a : b) = (c : d) and ([b,b] ≤ a ⇔ [d ,d ] ≤ c).

Proof:

(a : b) = (b ∧ c : b) = (b : b) ∧ (c : b) =
(c : b) = (c : b) ∧ (c : c) = (c : b ∨ c) =
(c : d).

⇒: [d ,d ] = [b ∨ c,b ∨ c] =
[b,b] ∨ [b, c] ∨ [c, c] ≤ a ∨ c ∨ c = c.

⇐: [b,b] ≤ [d ,d ] ≤ c and [b,b] ≤ b,

hence [b,b] ≤ b ∧ c = a.

❜

❜

❜

❜

�
��

�
��

b c

b ∧ c = a

d = b ∨ c
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The largest commutator operation

Definition [Czelakowski, 2008]

Let L be a complete lattice. For x , y ∈ L we define

⌈x , y⌉ :=
∨

j∈J

[x , y ]j ,

where {[., .]j ||| j ∈ J} is the set of all binary operations satisfying

[x , y ] ≈ [y , x ], [x , y ] ≤ x ∧ y , and [
∨

i∈I xi , y ] ≈
∨

i∈I [xi , y ].

Definition

Let L be a complete lattice. Let γ1 = λ1 := 1, γn+1 := ⌈γn, γn⌉L and

λn+1 := ⌈1, λn⌉ for n ∈ N.

L forces abelian type if ⌈1,1⌉ = 0.

L forces nilpotent type if ∃n ∈ N : λn = 0.

L forces solvable type if ∃n ∈ N : γn = 0.
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The largest commutator operation - change of lattices

Theorem (L ≤0,1 K)

Let L be a complete lattice, and let K be a complete lattice such that L

is a complete (0,1)-sublattice of K.

If L forces abelian, nilpotent, or solvable type, then so does K.

Theorem (L ։ K)

Let L be a complete lattice, and let K be a complete

(0,1)-homomorphic image of L.

If L forces abelian, nilpotent, or solvable type, then so does K.
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Lattices forcing various types

Theorem

Let L be a modular lattice of finite height. Then

L forces abelian type ⇐ L has a (0,1)-sublattice with more than 2

elements that is simple and complemented.

L forces solvable type ⇔ B2 is not a homomorphic image of L.

L forces nilpotent type ⇐ for all α ≺ β ∈ L :∨
{η ∈ L ||| η is meet irreducible and I[α, β] ! I[η, η+]} = 1.
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Solvable algebras

Theorem

Let A be an algebra in a cm variety. If Con(A) has a complete

(0,1)-sublattice L of finite height such that B2 is not a homomorphic

image of L, then A is solvable.

Lemma

Let A be such that Con(A) is a modular lattice of finite height with B2

as a homomorphic image. Then there is [., .] such that

(Con(A),∨,∧, [., .]) is a commutator lattice with α ∈ Con(A) such that

α 6= 0 and [α,α] = α.

Question

Can we realize this [., .] as the commutator operation of an expansion

of A?
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Solvable algebras

Theorem

Let A be an algebra in a cm variety such that Con(A) is of finite height

and has B2 as a homomorphic image. Let

A
c := (A,Pol(Con(A))).

Then Con(A) = Con(Ac) and Ac is not solvable.
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Nilpotent algebras

Definition

Let L be a complete lattice. For α ≺ β ∈ L, we define

γ(α, β) :=
∨

{η ∈ L ||| η is m.i. and I[η, η+] ! I[α, β]}.

Theorem

Let A be an algebra in a cm variety. Assume that Con(A) has a

complete (0,1)-sublattice L of finite height such that for all α, β ∈ L

with α ≺ β, we have γ(α, β) = 1.

Then A is nilpotent.
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Nilpotent algebras

Theorem

Let A be a finite expanded group, and let α, β ∈ Con(A) be such that

α ≺ β. Then the centralizer (α : β)Ac of β over α in Ac is γ(α, β).

Corollary

Let A be a finite expanded group. Then Ac is nilpotent ⇔ for all

α, β ∈ Con(A) : (α ≺ β ⇒ γ(α, β) = 1A).
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Missing Theorems

Missing Theorem: lattice side, abelian

Let L be a finite lattice. Then L forces abelian type if and only if L

satisfies Missing Condition 1.

Missing Theorem: algebra side, abelian

Let A be a finite algebra in a cp variety. Then Ac is abelian if and only if

Con(A) satisfies Missing Condition 2 (or 1).
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Missing Theorems

Conjecture: lattice side, nilpotent

Let L be a finite modular lattice. Then L forces nilpotent type ⇔
γ(α, β) = 1 for all α ≺ β.

Remarks: ⇐ is proved. ⇒ is true if L is the congruence lattice of a

finite expanded group A. Then the commutator operation [., .]Ac of Ac

is a lower bound for ⌈., .⌉L.

Conjecture: algebra side, nilpotent

Let A be an algebra in a cm variety with Con(A) of finite height. Then

Ac is nilpotent ⇔ γ(α, β) = 1 for all α ≺ β ∈ Con(A).

⇐ is proved. ⇒ is true if A is a finite expanded group.
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