On CSP Dichotomy Conjecture

Dmitriy Zhuk
zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics
Moscow State University

Arbeitstagung Allgemeine Algebra
92th Workshop on General Algebra
Prague, May 27-29, 2016
Outline

1. What is CSP?
2. CSP Dichotomy Conjecture
3. Minimal WNU
4. Bijective WNU
5. Main Conjecture
Let G be a finite set of predicates on a finite set A.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.
Let G be a finite set of predicates on a finite set A.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}$, $G = \{x < y, x \leq y\}$.

CSP instances:

$x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4,$
Constraint Satisfaction Problem

Let G be a finite set of predicates on a finite set A.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

$$\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),$$

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}$, $G = \{x < y, x \leq y\}$.

CSP instances:

$x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, No solutions
Constraint Satisfaction Problem

Let \(G \) be a finite set of predicates on a finite set \(A \).

CSP(\(G \))

Given: a conjunction of predicates, i.e. a formula

\[
\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}),
\]

where \(\rho_1, \ldots, \rho_s \in G \).

Decide: whether the formula is satisfiable.

Example

\(A = \{0, 1, 2\}, G = \{x < y, x \leq y\} \).

CSP instances:
\begin{align*}
&x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4, \text{ No solutions} \\
&x_1 \leq x_2 \land x_2 \leq x_3 \land x_3 \leq x_1,
\end{align*}
Let G be a finite set of predicates on a finite set A.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

\[\rho_1(x_{i_1,1}, \ldots, x_{i_1,n_1}) \land \cdots \land \rho_s(x_{i_s,1}, \ldots, x_{i_s,n_s}), \]

where $\rho_1, \ldots, \rho_s \in G$.

Decide: whether the formula is satisfiable.

Example

$A = \{0, 1, 2\}$, $G = \{x < y, x \leq y\}$.

CSP instances:

- $x_1 < x_2 \land x_2 < x_3 \land x_3 < x_4$, No solutions
- $x_1 \leq x_2 \land x_2 \leq x_3 \land x_3 \leq x_1$, $x_1 = x_2 = x_3 = 0$.
A weak near unanimity operation (WNU) is an operation f satisfying

$$
\begin{align*}
 f(x, x, \ldots, x) &= x \\
 f(x, \ldots, x, y) &= f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x).
\end{align*}
$$

Suppose $(x = c)$ belongs to G for every $c \in A$. Only idempotent case!

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G. CSP(G) is NP-complete otherwise.

Theorem

[Ralph McKenzie and Miklós Maróti]

CSP(G) is NP-complete if no WNU preserving G. [Dmitriy Zhuk](zhuk.dmitriy@gmail.com) (Moscow State University)

On CSP Dichotomy Conjecture
A weak near unanimity operation (WNU) is an operation f satisfying
\[f(x, x, \ldots, x) = x \text{ and } \]
\[f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x). \]

Suppose $(x = c)$ belongs to G for every $c \in A$. Only idempotent case!
A weak near unanimity operation (WNU) is an operation f satisfying
\[f(x, x, \ldots, x) = x \] and
\[f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x). \]

Suppose $(x = c)$ belongs to G for every $c \in A$. Only idempotent case!

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.
A weak near unanimity operation (WNU) is an operation f satisfying
\[f(x, x, \ldots, x) = x \] and
\[f(x, \ldots, x, y, x) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x). \]

Suppose $(x = c)$ belongs to G for every $c \in A$. Only idempotent case!

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving G, CSP(G) is NP-complete otherwise.

Theorem[Ralph McKenzie and Miklós Maróti]

CSP(G) is NP-complete if no WNU preserving G.
The conjecture was proved

History

The conjecture was proved

The conjecture was proved

The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
History

The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96, ...
- $|A| \leq 19$, Dmitriy Zhuk, AAA 97, ...
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia, ...
- $|A| \leq 29$, Dmitriy Zhuk, AAA 99, ...
- $|A| \leq 31$, Dmitriy Zhuk, AAA 100, Linz, Austria, ...
The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
History

The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|A| \leq 19$, Dmitriy Zhuk, AAA 97,,,
The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96, , ,
- $|A| \leq 19$, Dmitriy Zhuk, AAA 97, , ,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,
The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|A| \leq 19$, Dmitriy Zhuk, AAA 97,,,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,
- $|A| \leq 29$, Dmitriy Zhuk, AAA 99,,,
History

The conjecture was proved

- $|A| = 5$, Dmitriy Zhuk, AAA 91, Brno, February 5-7, 2016
- $|A| \leq 7$, Dmitriy Zhuk, AAA 92, Prague, May 27-29, 2016
- $|A| \leq 11$, Dmitriy Zhuk, AAA 93, Bern, February 10-12, 2017
- $|A| \leq 13$, Dmitriy Zhuk, AAA 94, Novi Sad, June 15-18, 2017
- $|A| \leq 17$, Dmitriy Zhuk, AAA 96,,,
- $|A| \leq 19$, Dmitriy Zhuk, AAA 97,,,
- $|A| \leq 23$, Dmitriy Zhuk, AAA 98, Moscow, Russia,
- $|A| \leq 29$, Dmitriy Zhuk, AAA 99,,,
- $|A| \leq 31$, Dmitriy Zhuk, AAA 100, Linz, Austria,
Clone generated by an operation

For an operation \(f \) by \(\text{Clo}(f) \) we denote the clone generated by \(f \).
Definitions

Clone generated by an operation

For an operation f by $\text{Clo}(f)$ we denote the clone generated by f.

Absorption

A subuniverse B absorbs A if there exists an operation $f \in \text{Clo}(w)$ such that $f(B, \ldots, B, A, B, \ldots, B) \subseteq B$ for any position of A.

- If f is binary, then the absorption is called binary.
Definitions

Clone generated by an operation

For an operation \(f \) by \(\text{Clo}(f) \) we denote the clone generated by \(f \).

Absorption

A subuniverse \(B \) absorbs \(A \) if there exists an operation \(f \in \text{Clo}(w) \) such that \(f(B, \ldots, B, A, B, \ldots, B) \subseteq B \) for any position of \(A \).

- If \(f \) is binary, then the absorption is called binary.

1-consistency

A CSP instance is called 1-consistent if every \(x_i \) in any constraint takes all values from the domain of \(x_i \).
Definitions

Clone generated by an operation
For an operation \(f \) by \(\text{Clo}(f) \) we denote the clone generated by \(f \).

Absorption
A subuniverse \(B \) absorbs \(A \) if there exists an operation \(f \in \text{Clo}(w) \) such that \(f(B, \ldots, B, A, B, \ldots, B) \subseteq B \) for any position of \(A \).
- If \(f \) is binary, then the absorption is called binary.

1-consistency
A CSP instance is called 1-consistent if every \(x_i \) in any constraint takes all values from the domain of \(x_i \).

Subdirect
A relation \(\rho \subseteq A_1 \times \cdots \times A_n \) is called subdirect if \(\text{pr}_i(\rho) = A_i \) for every \(i \).
A WNU w is called **minimal** if there doesn’t exist WNU w' such that $\text{Clo}(w') \nsubseteq \text{Clo}(w)$.
A WNU w is called \textit{minimal} if there doesn’t exist WNU w' such that $\text{Clo}(w') \subsetneq \text{Clo}(w)$.

An operation f is called \textit{cyclic} if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$
A WNU w is called **minimal** if there doesn’t exist WNU w' such that $\text{Clo}(w') \subsetneq \text{Clo}(w)$.

An operation f is called **cyclic** if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L. Barto, M. Kozik, 2012]

Let \mathcal{V} be an idempotent variety generated by a finite algebra A then the following are equivalent.

- \mathcal{V} is a Taylor variety;
- \mathcal{V} (equivalently the algebra A) has a cyclic term;
- \mathcal{V} (equivalently the algebra A) has a cyclic term of arity p, for every prime $p > |A|$.

Corollary 1

For every WNU w there exists a cyclic operation $w' \in \text{Clo}(w)$ of arity at most $2|A|$ (which is also a WNU).
A WNU w is called **minimal** if there doesn’t exist WNU w' such that $\text{Clo}(w') \subset \text{Clo}(w)$.

An operation f is called **cyclic** if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L. Barto, M. Kozik, 2012]

Let \mathcal{V} be an idempotent variety generated by a finite algebra A then the following are equivalent.

- \mathcal{V} is a Taylor variety;
- \mathcal{V} (equivalently the algebra A) has a cyclic term;
- \mathcal{V} (equivalently the algebra A) has a cyclic term of arity p, for every prime $p > |A|$.

Corollary 1

For every WNU w there exists a cyclic operation $w' \in \text{Clo}(w)$ of arity at most $2|A|$ (which is also a WNU).
A WNU w is called **minimal** if there doesn’t exist WNU w' such that $\text{Clo}(w') \subsetneq \text{Clo}(w)$.

An operation f is called **cyclic** if f is idempotent and

$$f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).$$

Theorem [L.Barto, M. Kozik, 2012]

Corollary 1

For every WNU w there exists a cyclic operation $w' \in \text{Clo}(w)$ of arity at most $2|A|$ (which is also a WNU).

Corollary 2

For every WNU w there exists a minimal WNU $w' \in \text{Clo}(w)$.
A WNU \(w \) is called \textbf{minimal} if there doesn’t exist WNU \(w' \) such that \(\text{Clo}(w') \subsetneq \text{Clo}(w) \).

An operation \(f \) is called \textbf{cyclic} if \(f \) is idempotent and

\[
f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1).
\]

\textbf{Theorem [L.Barto, M. Kozik, 2012]}

\textbf{Corollary 1}

For every WNU \(w \) there exists a cyclic operation \(w' \in \text{Clo}(w) \) of arity at most \(2|A| \) (which is also a WNU).

\textbf{Corollary 2}

For every WNU \(w \) there exists a minimal WNU \(w' \in \text{Clo}(w) \)

- It is sufficient to prove CSP Dichotomy Conjecture just for minimal WNU.
Why minimal WNU?

Lemma

Suppose B absorbs A with a binary operation $f \in \text{Clo}(w)$, w is a minimal WNU. Then $w(A, \ldots, A, B, A, \ldots, A) \subseteq B$ for any position of B.

Dmitriy Zhuk
zhuk.dmitriy@gmail.com
(Moscow State University)

On CSP Dichotomy Conjecture
Why minimal WNU?

Lemma

Suppose B absorbs A with a binary operation $f \in \text{Clo}(w)$, w is a minimal WNU. Then $w(A, \ldots, A, B, A, \ldots, A) \subseteq B$ for any position of B.
A WNU w is called bijective if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have

$w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.
Bijective WNU

A WNU w is called **bijective** if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have $w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.

Equivalent definition of a bijective WNU

A WNU w is called **bijective** if for any i and any tuple (a_1, \ldots, a_n) the operation $h(x) = w(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ is bijective.
Bijective WNU

A WNU w is called **bijective** if for any two tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) that differ just in one component we have $w(a_1, \ldots, a_n) \neq w(b_1, \ldots, b_n)$.

Equivalent definition of a bijective WNU

A WNU w is called **bijective** if for any i and any tuple (a_1, \ldots, a_n) the operation $h(x) = w(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ is bijective.

Example 1: Quasi-linear WNU

$w(x_1, \ldots, x_n) = x_1 + x_2 + \ldots + x_n$ where $(A; +)$ is an abelian group
Example 2: A bijective WNU that is not Abelian.

Define a Mal’tsev operation and a WNU on \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

\[
\begin{align*}
m^{(1)}(x, y, z) &= x^{(1)} + y^{(1)} + z^{(1)}. \\
m^{(2)}(x, y, z) &= x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1). \\
w(x_1, x_2, x_3, x_4, x_5) &= m(m(x_1, x_2, x_3), x_2, m(x_4, x_2, x_5)).
\end{align*}
\]
Example 2: A bijective WNU that is not Abelian.

Define a Mal’tsev operation and a WNU on $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$m^{(1)}(x, y, z) = x^{(1)} + y^{(1)} + z^{(1)}.$$

$$m^{(2)}(x, y, z) = x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1).$$

$$w(x_1, x_2, x_3, x_4, x_5) = m(m(x_1, x_2, x_3), x_2, m(x_4, x_2, x_5)).$$

$$w(x, \ldots, x, y) = w(x, \ldots, x, y, x) = \cdots = w(y, x, \ldots, x) = y.$$
Example 2: A bijective WNU that is not Abelian.

Define a Mal’tsev operation and a WNU on \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

\[
m^{(1)}(x, y, z) = x^{(1)} + y^{(1)} + z^{(1)}. \\
m^{(2)}(x, y, z) = x^{(2)} + y^{(2)} + z^{(2)} + x^{(1)}z^{(1)}(y^{(1)} + 1).
\]

\[
w(x_1, x_2, x_3, x_4, x_5) = m(m(x_1, x_2, x_3), x_2, m(x_4, x_2, x_5)).
\]

- \(w(x, \ldots, x, y) = w(x, \ldots, x, y, x) = \cdots = w(y, x, \ldots, x) = y. \)
- the WNU \(w \) is a minimal WNU.
Motivation

Fact
Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.
Motivation

Fact

Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.
Motivation

Fact
Suppose σ_1 and σ_2 are congruences on A, w/σ_1 and w/σ_2 are bijective. Then $w/(\sigma_1 \cap \sigma_2)$ is bijective.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Lemma
Suppose $\rho \subseteq A_1 \times A_2$ is subdirect, the WNU w is bijective on A_2, no binary absorption on A_1, then $\rho = (B_1 \times C_1) \cup \cdots \cup (B_s \times C_s)$ where $A_1 = B_1 \sqcup \cdots \sqcup B_s$, $A_2 = C_1 \sqcup \cdots \sqcup C_s$.
Motivation

Corollary

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n.
Motivation

Corollary

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n.
- No binary absorption on D_1, \ldots, D_n.
Corollary

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n.
- No binary absorption on D_1, \ldots, D_n.
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.
Motivation

Corollary

Suppose
- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n.
- No binary absorption on D_1, \ldots, D_n.
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.
- Factorize all the constraints, i.e. replace every predicate ρ by $\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_i \land \cdots \land (x_n, y_n) \in \sigma_i$

The obtained CSP instance we denote by Θ^F
Corollary

Suppose

- We have a 1-consistent CSP instance Θ with domains D_1, \ldots, D_n.
- No binary absorption on D_1, \ldots, D_n.
- Let σ_i be the minimal congruence on D_i such that w/σ_i is bijective.
- Factorize all the constraints, i.e. replace every predicate ρ by
 $$\rho'(x_1, \ldots, x_n) = \exists y_1 \ldots \exists y_n \rho(y_1, \ldots, y_n) \land (x_1, y_1) \in \sigma_{i_1} \land \cdots \land (x_n, y_n) \in \sigma_{i_n}$$

 The obtained CSP instance we denote by Θ^F
- Let (S_1, \ldots, S_n) be a solution of Θ^F.

then the restriction of Θ to (S_1, \ldots, S_n) is 1-consistent.
We say that a relation \(\rho \in A_1 \times \cdots \times A_n \) is compatible with a congruence \(\sigma \) on \(A_i \) if

\[(a_1, \ldots, a_n) \in \rho \land (a_i, b) \in \sigma \Rightarrow (a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \in \rho.\]
We say that a relation $\rho \in A_1 \times \cdots \times A_n$ is compatible with a congruence σ on A_i if

$$(a_1,\ldots,a_n) \in \rho \land (a_i,b) \in \sigma \Rightarrow (a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture
We say that a relation $\rho \in A_1 \times \cdots \times A_n$ is compatible with a congruence σ on A_i if

$$(a_1, \ldots, a_n) \in \rho \land (a_i, b) \in \sigma \Rightarrow (a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose $\rho \in A_1 \times \cdots \times A_n$, ρ is compatible with σ_j. Then ρ is compatible with σ_i for every i.
We say that a relation \(\rho \in A_1 \times \cdots \times A_n \) is compatible with a congruence \(\sigma \) on \(A_i \) if

\[
(a_1, \ldots, a_n) \in \rho \land (a_i, b) \in \sigma \Rightarrow (a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \in \rho.
\]

Let \(\sigma_i \) be the minimal congruence on \(A_i \) such that \(w/\sigma_i \) is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose \(\rho \in A_1 \times \cdots \times A_n \), \(\rho \) is compatible with \(\sigma_j \). Then \(\rho \) is compatible with \(\sigma_i \) for every \(i \).

Lemma

Suppose \(\rho \subseteq A_1 \times A_2 \times \cdots \times A_n \) is preserved by a WNU \(w \), \(\rho \) is compatible with \(\sigma_n \), \(\text{pr}_{1,2,\ldots,n-1}(\rho) = A_1 \times \cdots \times A_{n-1} \), no binary absorption on \(A_1, A_2, \ldots, A_n \). Then \(\rho \) is compatible with \(\sigma_i \) for every \(i \).
We say that a relation $\rho \in A_1 \times \cdots \times A_n$ is compatible with a congruence σ on A_i if

$$(a_1, \ldots, a_n) \in \rho \land (a_i, b) \in \sigma \implies (a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \in \rho.$$

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

What I need to prove CSP Dichotomy Conjecture

Suppose $\rho \in A_1 \times \cdots \times A_n$, ρ is compatible with σ_j. Then ρ is compatible with σ_i for every i.

Lemma

Suppose $\rho \subseteq A_1 \times A_2 \times \cdots \times A_n$ is preserved by a WNU w, ρ is compatible with σ_n, $\text{pr}_{1,2,\ldots,n-1}(\rho) = A_1 \times \cdots \times A_{n-1}$, no binary absorption on A_1, A_2, \ldots, A_n. Then ρ is compatible with σ_i for every i.

Can we avoid the condition $\text{pr}_{1,2,\ldots,n-1}(\rho) = A_1 \times \cdots \times A_{n-1}$?
Definitions

- By $\text{Inv}(f)$ we denote all invariants of f.
Definitions

- By $\text{Inv}(f)$ we denote all invariants of f.
- A relation is called **critical in a relational clone C** if it is completely \cap-irreducible in C and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).

Equiv alently, a relation ρ is critical in a relational clone C if it cannot be represented as $\rho_1(\ldots) \wedge \cdots \wedge \rho_n(\ldots)$, where for every i we have $\rho_i \in C$, $\text{arity}(\rho) > \text{arity}(\rho_i)$ or $\rho \not\subseteq \rho_i$.

Every relation can be represented as a conjunction of critical relations.

A subset $C \subseteq A$ is called a center on A if there exists a sub direct binary relation $\rho \subseteq A \times A$ such that $\rho \in \text{Inv}(w)$ and $C = \{c \in A | \forall d \in A: (c, d) \in \rho\}$.
Definitions

- By $\text{Inv}(f)$ we denote all invariants of f.
- A relation is called **critical in a relational clone** \mathcal{C} if it is completely \cap-irreducible in \mathcal{C} and directly indecomposable (Keith A.Kearnes and Ágnes Szendrei).
- Equivalently, a relation ρ is critical in a relational clone \mathcal{C} if it cannot be represented as $\rho_1(\ldots) \land \cdots \land \rho_n(\ldots)$, where for every i we have $\rho_i \in \mathcal{C}$, $\text{arity}(\rho) > \text{arity}(\rho_i)$ or $\rho \subsetneq \rho_i$.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)
Definitions

- By \(\text{Inv}(f) \) we denote all invariants of \(f \).
- A relation is called critical in a relational clone \(\mathcal{C} \) if it is completely \(\cap \)-irreducible in \(\mathcal{C} \) and directly indecomposable (Keith A. Kearnes and Ágnes Szendrei).
- Equivalently, a relation \(\rho \) is critical in a relational clone \(\mathcal{C} \) if it cannot be represented as \(\rho_1(\ldots) \land \cdots \land \rho_n(\ldots) \), where for every \(i \) we have \(\rho_i \in \mathcal{C} \), \(\text{arity}(\rho) > \text{arity}(\rho_i) \) or \(\rho \subsetneq \rho_i \).
- Every relation can be represented as a conjunction of critical relations.
Definitions

- By $\text{Inv}(f)$ we denote all invariants of f.
- A relation is called **critical in a relational clone C** if it is completely \cap-irreducible in C and directly indecomposable (Keith A. Kearnes and Ágnes Szendrei).
- Equivalently, a relation ρ is critical in a relational clone C if it cannot be represented as $\rho_1(\ldots) \land \cdots \land \rho_n(\ldots)$, where for every i we have $\rho_i \in C$, $\text{arity}(\rho) > \text{arity}(\rho_i)$ or $\rho \subsetneq \rho_i$.
- Every relation can be represented as a conjunction of critical relations.
- A subset $C \subsetneq A$ is called a **center on A** if there exists a subdirect binary relation $\rho \subseteq A \times A$ such that $\rho \in \text{Inv}(w)$ and $C = \{ c \in A \mid \forall d \in A: (c, d) \in \rho \}$.
Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$:
 $$(a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho.$$

Then ρ is compatible with σ_1 and σ_2.

Theorem

Conjecture 1 \Rightarrow CSP Dichotomy Conjecture.

Theorem

Conjecture 1 holds if $|A_i| \leq 5$ for every i.

Corollary

CSP Dichotomy Conjecture holds if $|A| \leq 5$.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)
Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$:

 $(a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$.
Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3:\ (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$.

Theorem

Conjecture 1 \Rightarrow CSP Dichotomy Conjecture.
Conjecture 1
Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3:\ (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$.

Theorem
Conjecture 1 \Rightarrow CSP Dichotomy Conjecture.

Theorem
Conjecture 1 holds if $|A_i| \leq 5$ for every i.
Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3$:
 $$(a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho.$$

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho.$$

Theorem

Conjecture 1 \Rightarrow CSP Dichotomy Conjecture.

Theorem

Conjecture 1 holds if $|A_i| \leq 5$ for every i.

Corollary

CSP Dichotomy Conjecture holds if $|A| \leq 5$.
Conjecture 2

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3 : (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.
4. no binary absorption or center on A_1 and A_2.
5. w/κ is quasi-linear for every i and every maximal congruence κ on A_i.
6. There exists $c \in A_3$ such that $(\forall a_1 \in A_1 \exists a_2 \in A_2 : (a_1, a_2, c) \in \rho)$ and $(\forall a_2 \in A_2 \exists a_1 \in A_1 : (a_1, a_2, c) \in \rho)$.

Then ρ is compatible with σ_1 and σ_2.
Conjecture 2

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3:\ (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.
4. no binary absorption or center on A_1 and A_2
5. w/κ is quasi-linear for every i and every maximal congruence κ on A_i.
6. There exists $c \in A_3$ such that $\forall a_1 \in A_1 \exists a_2 \in A_2: (a_1, a_2, c) \in \rho$ and $\forall a_2 \in A_2 \exists a_1 \in A_1: (a_1, a_2, c) \in \rho$.

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$\forall a_1, a_2, a_3, b_1, b_2, b_3:\ (a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$.
Theorem

Conjecture 2 \Rightarrow CSP Dichotomy Conjecture.

Corollary

CSP Dichotomy Conjecture holds if $|A| \leq 7$.
Theorem
Conjecture 2 \Rightarrow CSP Dichotomy Conjecture.

Theorem
Conjecture 2 holds if $|A_i| \leq 7$ for every i.
Theorem
Conjecture 2 \Rightarrow CSP Dichotomy Conjecture.

Theorem
Conjecture 2 holds if $|A_i| \leq 7$ for every i.

Corollary
CSP Dichotomy Conjecture holds if $|A| \leq 7$.
I need your help with Conjecture 1.

Suppose \(\rho \subseteq A_1 \times A_2 \times A_3 \) is a critical sub direct relation in \(\text{Inv}(w) \), and \(w \) is a minimal WNU. \(\rho \) is compatible with \(\sigma_3 \). (parallelogram property)

\[\forall a_1, a_2, a_3, b_1, b_2, b_3 : (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho. \]

Then \(\rho \) is compatible with \(\sigma_1 \) and \(\sigma_2 \), or, equivalently,

\[(a_1, a_2, a_3) \in \rho, (a_1, b_1, a_2) \in \sigma_1, (a_2, b_2, a_3) \in \sigma_2, (a_3, b_3, a_3) \Rightarrow (b_1, b_2, b_3) \in \rho. \]
I need your help with Conjecture 1.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in Inv(w), and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3:
 (a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho$.

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$\forall a_1, a_2, a_3, b_1, b_2, b_3:
(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$.
I need your help with Conjecture 1.

Let σ_i be the minimal congruence on A_i such that w/σ_i is bijective.

Conjecture 1

Suppose $\rho \subseteq A_1 \times A_2 \times A_3$ is a critical subdirect relation in $\text{Inv}(w)$, and

1. w is a minimal WNU.
2. ρ is compatible with σ_3.
3. (parallelogram property) $\forall a_1, a_2, a_3, b_1, b_2, b_3:$
 $$(a_1, a_2, b_3), (b_1, b_2, a_3), (b_1, b_2, b_3) \in \rho \Rightarrow (a_1, a_2, a_3) \in \rho.$$

Then ρ is compatible with σ_1 and σ_2, or, equivalently,

$$(a_1, a_2, a_3) \in \rho, (a_1, b_1) \in \sigma_1, (a_2, b_2) \in \sigma_2, (a_3, b_3) \in \sigma_3 \Rightarrow (b_1, b_2, b_3) \in \rho$$

Thank you for your attention.
Algorithm

1-3 Preliminary steps. We repeat them if necessary.

4 If all domains are unary, we get a solution.

5 If there exists a binary absorption: Apply Absorbing Reduction, provide 1-consistency, and go to Step 4.

6 If there exists a center: Apply Central Reduction, provide 1-consistency, and go to Step 4.

7 If we get all functions after factorization: Apply “All Functions” reduction, provide 1-consistency, and go to Step 4.

8 If the WNU \mathbf{w} is bijective after factorization

 1. solve the factorized CSP.
 2. if it has a solution, apply Linear Reduction and go to Step 4.
 3. if we can remove a constraint or split a variable to get a CSP instance Ω such that Ω^F has no solutions, we do this while possible.
 4. if we can remove a constraint or split a variable to get a CSP instance Ω such that Ω^F has a solution (S_1, \ldots, S_n) but the reduction of Ω to (S_1, \ldots, S_n) has no solutions, then we consider the reduction and go to Step 5.
 5. if Θ^F has no solutions and we cannot remove or split, then we reduce the original domain A_i to A'_i.

Dmitriy Zhuk zhuk.dmitriy@gmail.com (Moscow State University)