Monoid of Nd-Full Hypersubstitutions

Somsak Lekkoksung

Rajamangala University of Technology Isan Khon Kaen Campus, Thailand AAA92

May 27, 2016

Outline

- 1 Motivation
- 2 Preliminaries
- 3 Monoid Nd-Full Hypersubstitutions
- 4 References

(1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.
- (3) In 2015, N. Lekkoksung and P. Jampachon studied the Non-Deterministic Linear Hypersubstitutions.

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.
- (3) In 2015, N. Lekkoksung and P. Jampachon studied the Non-Deterministic Linear Hypersubstitutions.
- (4) In 2016, J. Joomwong and D. Phusanga studied the Deterministic and Non-Deterministic Hypersubstitutions for algebraic systems.

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.
- (3) In 2015, N. Lekkoksung and P. Jampachon studied the Non-Deterministic Linear Hypersubstitutions.
- (4) In 2016, J. Joomwong and D. Phusanga studied the Deterministic and Non-Deterministic Hypersubstitutions for algebraic systems.
- (5) In 2016, S. Lekkoksung studied the M-Solid Generalized Non-Deterministic Varieties.

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.
- (3) In 2015, N. Lekkoksung and P. Jampachon studied the Non-Deterministic Linear Hypersubstitutions.
- (4) In 2016, J. Joomwong and D. Phusanga studied the Deterministic and Non-Deterministic Hypersubstitutions for algebraic systems.
- (5) In 2016, S. Lekkoksung studied the M-Solid Generalized Non-Deterministic Varieties.

The aim of this research is to shows that the structure

- (1) In 2004, K. Denecke and P. Jampachon studied the Clones of Full Terms.
- (2) In 2008, K Denecke, P. Glubudom and J. Koppitz studied the Power Clones and Non-Deterministic Hypersubstitutions.
- (3) In 2015, N. Lekkoksung and P. Jampachon studied the Non-Deterministic Linear Hypersubstitutions.
- (4) In 2016, J. Joomwong and D. Phusanga studied the Deterministic and Non-Deterministic Hypersubstitutions for algebraic systems.
- (5) In 2016, S. Lekkoksung studied the M-Solid Generalized Non-Deterministic Varieties.

The aim of this research is to shows that the structure

$$(nd\text{-}Hyp^F(\tau_n); \circ_{nd}, \sigma_{id}^{nd})$$
 is a monoid.

Now we consider algebras of n-ary type, that is, all operation symbols have the same fixed arity n. Let τ_n be such a fixed n-ary type with operation symbols $(f_i)_{i\in I}$ indexed by some set I.

Now we consider algebras of n-ary type, that is, all operation symbols have the same fixed arity n. Let τ_n be such a fixed n-ary type with operation symbols $(f_i)_{i \in I}$ indexed by some set I.

Monoid Nd-Full Hypersubstitutions

Definition([1])

Let H_n be the set of all permutations $s: \{1, \ldots, n\} \to \{1, \ldots, n\}$ and let f_i be an operation symbol of type τ_n . Full terms of type τ_n are defined in the following way:

- (1) $f_i(x_{s(1)},\ldots,x_{s(n)})$ is a full term of type τ_n .
- (2) If t_1, \ldots, t_n are full terms of type τ_n , then $f_i(t_1, \ldots, t_n)$ is a full term of type τ_n .

We denoted by $W_{\tau_n}^F(X_n)$ the set of all full terms of type τ_n .

Let $s: \{1,2\} \to \{1,2\}$ and $r: \{1,2\} \to \{1,2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Then

Let
$$s: \{1,2\} \to \{1,2\}$$
 and $r: \{1,2\} \to \{1,2\}$ which are defined by $s(1) = 2, s(2) = 1$ and $r(1) = 1, r(2) = 2$. Then

(1) $g(x_{s(1)}, x_{s(2)}) = g(x_2, x_1)$,

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Then

- (1) $g(x_{s(1)}, x_{s(2)}) = g(x_2, x_1),$
- (2) $f(x_{r(1)}, x_{r(2)}) = f(x_1, x_2)$ and

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Then

Monoid Nd-Full Hypersubstitutions

- (1) $g(x_{s(1)}, x_{s(2)}) = g(x_2, x_1),$
- (2) $f(x_{r(1)}, x_{r(2)}) = f(x_1, x_2)$ and
- (3) $f(q(x_2,x_1), f(x_1,x_2)),$

are full terms of type $\tau_2 = (2, 2)$.

Definition([1])

Let $W_{\tau_n}^F(X_n)$ be a set of full terms of type τ_n . Then the superposition operations

$$S^n: (W_{\tau_n}^F(X_n))^{n+1} \to W_{\tau_n}^F(X_n),$$

Monoid Nd-Full Hypersubstitutions

are defined in the following way: For $t, t_a \in W_{\tau_-}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$, we have

- (1) if $t = f_i(x_{s(1)}, \dots, x_{s(n)})$ for $s \in H_n$, then $S^n(f_i(x_{s(1)},\ldots,x_{s(n)}),t_1,\ldots,t_n):=f_i(t_{s(1)},\ldots,t_{s(n)}),$
- (2) if $t = f_i(s_1, \ldots, s_n)$ and if we assume that $S^n(s_a, t_1, \ldots, t_n)$ are already defined, then $S^n(f_i(s_1,\ldots,s_n),t_1,\ldots,t_n) :=$ $f_i(S^n(s_1,t_1,\ldots,t_n),\ldots,S^n(s_n,t_1,\ldots,t_n)).$

For a full term t we need the full term t_s arising from t by replacement a variable $x_i, 1 \le i \le n$ in t by a variable $x_{s(i)}$ for a permutation $s \in H_n$. This can be defined as follows:

For a full term t we need the full term t_s arising from t by replacement a variable $x_i, 1 \le i \le n$ in t by a variable $x_{s(i)}$ for a permutation $s \in H_n$. This can be defined as follows:

Monoid Nd-Full Hypersubstitutions

Definition([1])

Let t be a full term in $W_{\tau_n}^F(X_n)$ and let $s, r \in H_n$. We define the full term t_s in the following step:

For a full term t we need the full term t_s arising from t by replacement a variable $x_i, 1 \le i \le n$ in t by a variable $x_{s(i)}$ for a permutation $s \in H_n$. This can be defined as follows:

Definition([1])

Let t be a full term in $W_{\tau_n}^F(X_n)$ and let $s, r \in H_n$. We define the full term t_s in the following step:

(1) If
$$t = f_i(x_{r(1)}, \dots, x_{r(n)})$$
, then $t_s := f_i(x_{s(r(1))}, \dots, x_{s(r(n))})$.

For a full term t we need the full term t_s arising from t by replacement a variable $x_i, 1 \le i \le n$ in t by a variable $x_{s(i)}$ for a permutation $s \in H_n$. This can be defined as follows:

Monoid Nd-Full Hypersubstitutions

Definition([1])

Let t be a full term in $W_{\tau_n}^F(X_n)$ and let $s, r \in H_n$. We define the full term t_s in the following step:

(1) If
$$t = f_i(x_{r(1)}, \dots, x_{r(n)})$$
, then $t_s := f_i(x_{s(r(1))}, \dots, x_{s(r(n))})$.

(2) If
$$t = f_i(t_{r(1)}, \dots, t_{r(n)})$$
, then $t_s := f_i(t_{s(r(1))}, \dots, t_{s(r(n))})$.

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $t = f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})).$ Then

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $t = f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})).$ Then $t_s = (f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})))_s$

Let $s: \{1,2\} \to \{1,2\}$ and $r: \{1,2\} \to \{1,2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $t = f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)}))$. Then $t_s = (f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})))_s$ $= (f(g(x_2, x_1), f(x_1, x_2)))_s$

Let
$$s: \{1,2\} \to \{1,2\}$$
 and $r: \{1,2\} \to \{1,2\}$ which are defined
by $s(1) = 2, s(2) = 1$ and $r(1) = 1, r(2) = 2$. Let
 $t = f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)}))$. Then
 $t_s = (f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})))_s$
 $= (f(g(x_2, x_1), f(x_1, x_2)))_s$
 $= f(g(x_{s(2)}, x_{s(1)}), f(x_{s(1)}, x_{s(2)}))$

Monoid Nd-Full Hypersubstitutions

```
Let s: \{1,2\} \to \{1,2\} and r: \{1,2\} \to \{1,2\} which are defined
by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let
t = f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})). Then
 t_s = (f(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})))_s
       = (f(q(x_2,x_1),f(x_1,x_2)))_{\mathfrak{s}}
       = f(g(x_{s(2)}, x_{s(1)}), f(x_{s(1)}, x_{s(2)}))
       = f(q(x_1, x_2), f(x_2, x_1)).
```

Monoid Nd-Full Hypersubstitutions

Let $W_{\tau_n}^F(X_n)$ be a set of all full terms of type τ_n and let T be a subset of $W_{\tau_n}^F(X_n)$ and $s \in H_n$. Then we set

$$T_s := \begin{cases} \{t_s \mid t \in W_{\tau_n}^F(X_n)\} & \text{if } T \neq \emptyset \\ \emptyset & \text{if } T = \emptyset. \end{cases}$$

Let $W_{\tau_n}^F(X_n)$ be a set of all full terms of type τ_n and $s \in H_n$. Then the superposition operations

$$S_{nd}^n: (\mathcal{P}(W_{\tau_n}^F(X_n)))^{n+1} \to \mathcal{P}(W_{\tau_n}^F(X_n)),$$

Monoid Nd-Full Hypersubstitutions

for $T, T_q \subseteq W^F_{\tau_n}(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ such that T, T_q are non-empty sets, the $S^n_{nd}(T, T_1, \dots, T_n)$ are defined in the following way:

Let $W_{\tau_n}^F(X_n)$ be a set of all full terms of type τ_n and $s \in H_n$. Then the superposition operations

$$S_{nd}^n: (\mathcal{P}(W_{\tau_n}^F(X_n)))^{n+1} \to \mathcal{P}(W_{\tau_n}^F(X_n)),$$

Monoid Nd-Full Hypersubstitutions

for $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ such that T, T_q are non-empty sets, the $S_{nd}^n(T, T_1, \ldots, T_n)$ are defined in the following way:

(1) If
$$T = \{f_i(x_{s(1)}, \dots, x_{s(n)})\}$$
, then $S_{nd}^n(\{f_i(x_{s(1)}, \dots, x_{s(n)})\}, T_1, \dots, T_n) := \{f_i(t_{s(1)}, \dots, t_{s(n)}) \mid t_{s(q)} \in T_{s(q)}\}.$

Let $W_{\tau_n}^F(X_n)$ be a set of all full terms of type τ_n and $s \in H_n$. Then the superposition operations

$$S_{nd}^n: (\mathcal{P}(W_{\tau_n}^F(X_n)))^{n+1} \to \mathcal{P}(W_{\tau_n}^F(X_n)),$$

Monoid Nd-Full Hypersubstitutions

for $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ such that T, T_q are non-empty sets, the $S_{nd}^n(T,T_1,\ldots,T_n)$ are defined in the following way:

- (1) If $T = \{f_i(x_{s(1)}, \dots, x_{s(n)})\}$, then $S_{nd}^{n}(\{f_i(x_{s(1)},\ldots,x_{s(n)})\},T_1,\ldots,T_n):=\{f_i(t_{s(1)},\ldots,t_{s(n)})\mid$ $t_{s(a)} \in T_{s(a)} \}.$
- (2) If $T = \{f_i(t_1, \dots, t_n)\}$, then $S_{nd}^{n}(\{f_{i}(t_{1},\ldots,t_{n})\},T_{1},\ldots,T_{n}):=\{f_{i}(r_{1},\ldots,r_{n})\mid r_{a}\in$ $S_{n,d}^n(\{t_a\},T_1,\ldots,T_n)\}.$

Let $W_{\tau_n}^F(X_n)$ be a set of all full terms of type τ_n and $s \in H_n$. Then the superposition operations

$$S_{nd}^n: (\mathcal{P}(W_{\tau_n}^F(X_n)))^{n+1} \to \mathcal{P}(W_{\tau_n}^F(X_n)),$$

Monoid Nd-Full Hypersubstitutions

for $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ such that T, T_q are non-empty sets, the $S_{nd}^n(T,T_1,\ldots,T_n)$ are defined in the following way:

- (1) If $T = \{f_i(x_{s(1)}, \dots, x_{s(n)})\}$, then $S_{nd}^{n}(\{f_{i}(x_{s(1)},\ldots,x_{s(n)})\},T_{1},\ldots,T_{n}):=\{f_{i}(t_{s(1)},\ldots,t_{s(n)})\mid$ $t_{s(a)} \in T_{s(a)} \}.$
- (2) If $T = \{f_i(t_1, \dots, t_n)\}$, then $S_{nd}^{n}(\{f_{i}(t_{1},\ldots,t_{n})\},T_{1},\ldots,T_{n}):=\{f_{i}(r_{1},\ldots,r_{n})\mid r_{a}\in$ $S_{n,d}^n(\{t_a\},T_1,\ldots,T_n)\}.$
- (3) If T is an arbitrary subset of $W_{\tau_n}^F(X_n)$, then $S_{nd}^{n}(T, T_{1}, \dots, T_{n}) := \bigcup S_{nd}^{n}(\{t\}, T_{1}, \dots, T_{n}) \longrightarrow \mathbb{R}$

Definition (continuous)

If one of the sets T, T_1, \ldots, T_n is an empty set, then $S_{nd}^n(T,T_1,\ldots,T_n) := \emptyset.$

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $T = \{g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})\}, T_1 = \{f(x_{r(1)}, x_{r(2)})\}\$ and $T_2 = \{g(x_{s(1)}, x_{s(2)})\}$. Then we have

Monoid Nd-Full Hypersubstitutions

Let
$$s: \{1,2\} \to \{1,2\}$$
 and $r: \{1,2\} \to \{1,2\}$ which are defined by $s(1) = 2, s(2) = 1$ and $r(1) = 1, r(2) = 2$. Let $T = \{g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})\}, T_1 = \{f(x_{r(1)}, x_{r(2)})\}$ and $T_2 = \{g(x_{s(1)}, x_{s(2)})\}$. Then we have
$$S_{nd}^2(\{g(x_{s(1)}, x_{s(2)})\}, T_1, T_2) = S_{nd}^2(\{g(x_2, x_1)\}, T_1, T_2) = \{g(v_2, v_1) \mid v_2 \in T_2, v_1 \in T_1\} = \{g(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)}))\} = \{g(g(x_2, x_1), f(x_1, x_2))\}$$
 and,

Monoid Nd-Full Hypersubstitutions

Let
$$s: \{1,2\} \to \{1,2\}$$
 and $r: \{1,2\} \to \{1,2\}$ which are defined by $s(1) = 2, s(2) = 1$ and $r(1) = 1, r(2) = 2$. Let $T = \{g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)})\}$, $T_1 = \{f(x_{r(1)}, x_{r(2)})\}$ and $T_2 = \{g(x_{s(1)}, x_{s(2)})\}$. Then we have
$$S_{nd}^2(\{g(x_{s(1)}, x_{s(2)})\}, T_1, T_2) = S_{nd}^2(\{g(x_2, x_1)\}, T_1, T_2) = \{g(y_2, y_1) \mid y_2 \in T_2, y_1 \in T_1\} = \{g(g(x_{s(1)}, x_{s(2)}), f(x_{r(1)}, x_{r(2)}))\} = \{g(g(x_2, x_1), f(x_1, x_2))\}$$
 and,
$$S_{nd}^2(\{f(x_{r(1)}, x_{r(2)})\}, T_1, T_2) = S_{nd}^2(\{f(x_1, x_2)\}, T_1, T_2) = \{f(y_1, y_2) \mid y_1 \in T_1, y_2 \in T_2\} = \{f(y_1, y_2), g(y_2, y_1)\}\}$$

$$= \{f(y_1, y_2), g(y_2, y_1)\}.$$

Therefore we have

Example (Continuous)

$$\begin{array}{lll} S_{nd}^2(T,T_1,T_2) & = & S_{nd}^2(\{g(x_{s(1)},x_{s(2)}),f(x_{r(1)},x_{r(2)})\},T_1,T_2) \\ & = & S_{nd}^2(\{g(x_2,x_1),f(x_1,x_2)\},T_1,T_2) \\ & = & S_{nd}^2(\{g(x_2,x_1)\},T_1,T_2) \bigcup S_{nd}^2(\{f(x_1,x_2)\},T_1,T_2) \\ & = & \{g(g(x_2,x_1),f(x_1,x_2))\} \bigcup \{f(f(x_1,x_2),g(x_2,x_1)) \\ & = & \{g(g(x_2,x_1),f(x_1,x_2)),f(f(x_1,x_2),g(x_2,x_1))\}. \end{array}$$

Proposition 1

Let $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

(1)
$$S_{nd}^n(T_s, T_1, \dots, T_n) = S_{nd}^n(T, T_{s(1)}, \dots, T_{s(n)}).$$

Proposition 1

Let $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

- (1) $S_{nd}^n(T_s, T_1, \dots, T_n) = S_{nd}^n(T, T_{s(1)}, \dots, T_{s(n)}).$
- (2) $S_{nd}^n(T_s, T_1, \dots, T_n) = (S_{nd}^n(T, T_1, \dots, T_n))_s.$

Proposition 1

Let $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

- (1) $S_{nd}^n(T_s, T_1, \dots, T_n) = S_{nd}^n(T, T_{s(1)}, \dots, T_{s(n)}).$
- (2) $S_{nd}^n(T_s, T_1, \dots, T_n) = (S_{nd}^n(T, T_1, \dots, T_n))_s.$

Proposition 2

Let $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

Proposition 1

Let $T, T_n \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

- (1) $S_{nd}^n(T_s, T_1, \ldots, T_n) = S_{nd}^n(T, T_{s(1)}, \ldots, T_{s(n)}).$
- (2) $S_{nd}^n(T_s, T_1, \dots, T_n) = (S_{nd}^n(T, T_1, \dots, T_n))_s$.

Proposition 2

Let $T, T_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ and $s \in H_n$. Then we have

$$S_{nd}^{n}(T, T_{s(1)}, \dots, T_{s(n)}) = (S_{nd}^{n}(T, T_{1}, \dots, T_{n}))_{s}.$$

Let $T, T_q, S_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ be the set of full terms of type τ_n . Then we have

 $= S_{nd}^n(S_{nd}^n(T, S_1, \dots, S_n), T_1, \dots, T_n)$

Theorem 3

Let $T, T_q, S_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ be the set of full terms of type τ_n . Then we have $S_{nd}^{n}(T, S_{nd}^{n}(S_1, T_1, \dots, T_n), \dots, S_{nd}^{n}(S_n, T_1, \dots, T_n))$

Let $T, T_q, S_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ be the set of full terms of type τ_n . Then we have

$$S_{nd}^{n}(T, S_{nd}^{n}(S_{1}, T_{1}, \dots, T_{n}), \dots, S_{nd}^{n}(S_{n}, T_{1}, \dots, T_{n}))$$

= $S_{nd}^{n}(S_{nd}^{n}(T, S_{1}, \dots, S_{n}), T_{1}, \dots, T_{n})$

Using this superposition operation we can form algebra

Let $T, T_q, S_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ be the set of full terms of type τ_n . Then we have

Monoid Nd-Full Hypersubstitutions

$$S_{nd}^{n}(T, S_{nd}^{n}(S_{1}, T_{1}, \dots, T_{n}), \dots, S_{nd}^{n}(S_{n}, T_{1}, \dots, T_{n}))$$

= $S_{nd}^{n}(S_{nd}^{n}(T, S_{1}, \dots, S_{n}), T_{1}, \dots, T_{n})$

Using this superposition operation we can form algebra

$$(\mathcal{P}(W_{\tau_n}^F(X_n)); S_{nd}^n)$$

of type n+1.

Let $T, T_q, S_q \subseteq W_{\tau_n}^F(X_n), 1 \leq q \leq n, n \in \mathbb{N}$ be the set of full terms of type τ_n . Then we have

Monoid Nd-Full Hypersubstitutions

$$S_{nd}^{n}(T, S_{nd}^{n}(S_{1}, T_{1}, \dots, T_{n}), \dots, S_{nd}^{n}(S_{n}, T_{1}, \dots, T_{n}))$$

= $S_{nd}^{n}(S_{nd}^{n}(T, S_{1}, \dots, S_{n}), T_{1}, \dots, T_{n})$

Using this superposition operation we can form algebra

$$(\mathcal{P}(W_{\tau_n}^F(X_n)); S_{nd}^n)$$

of type n+1. This algebra is called

nd- $clone_F\tau_n$.

Definition

A mapping $\sigma^{nd}: \{f_i \mid i \in I\} \to \mathcal{P}(W_\tau^F(X_n))$ is called non-deterministic full hypersubstitution or nd-full hypersubstitution, for short. Let nd- $Hyp^F(\tau_n)$ be a set of all nd-full hypersubstitutions. Any such nd-full hypersubstitution, σ^{nd} uniquely determine a mapping

$$\hat{\sigma}^{nd}: \mathcal{P}(W_{\tau_n}^F(X_n)) \to \mathcal{P}(W_{\tau_n}^F(X_n)),$$

is defined in the following way:

(1)
$$\hat{\sigma}^{nd}[\emptyset] := \emptyset$$
.

- (1) $\hat{\sigma}^{nd}[\emptyset] := \emptyset$.
- (2) $\hat{\sigma}^{nd}[\{f_i(x_{s(1)},\ldots,x_{s(n)})\}] := (\sigma^{nd}(f_i))_s \text{ for every } s \in H_n.$

- (1) $\hat{\sigma}^{nd}[\emptyset] := \emptyset$.
- (2) $\hat{\sigma}^{nd}[\{f_i(x_{s(1)},\ldots,x_{s(n)})\}] := (\sigma^{nd}(f_i))_s \text{ for every } s \in H_n.$
- (3) $\hat{\sigma}^{nd}[\{f_i(t_1,\ldots,t_n)\}] :=$ $S_{nd}^n(\sigma^{nd}(f_i), \hat{\sigma}^{nd}[\{t_1\}], \dots, \hat{\sigma}^{nd}[\{t_n\}])$ and we assume that $\hat{\sigma}^{nd}[\{t_1\}]....\hat{\sigma}^{nd}[\{t_n\}]$ are already defined.

- $(1) \hat{\sigma}^{nd}[\emptyset] := \emptyset.$
- (2) $\hat{\sigma}^{nd}[\{f_i(x_{s(1)},\ldots,x_{s(n)})\}] := (\sigma^{nd}(f_i))_s \text{ for every } s \in H_n.$
- (3) $\hat{\sigma}^{nd}[\{f_i(t_1,\ldots,t_n)\}] := S_{nd}^n(\sigma^{nd}(f_i),\hat{\sigma}^{nd}[\{t_1\}],\ldots,\hat{\sigma}^{nd}[\{t_n\}])$ and we assume that $\hat{\sigma}^{nd}[\{t_1\}],\ldots,\hat{\sigma}^{nd}[\{t_n\}]$ are already defined.
- (4) $\hat{\sigma}^{nd}[T] := \bigcup_{t \in T} \hat{\sigma}^{nd}[\{t\}]$ where T is an arbitrary subset of $W_{\tau_n}^F(X_n)$.

Example

Let $s: \{1, 2\} \to \{1, 2\}$ and $r: \{1, 2\} \to \{1, 2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $T = \{g(f(x_{r(1)}, x_{r(2)}), g(x_{s(1)}, x_{s(2)})), f(x_{r(1)}, x_{r(2)})\}$, and let $\sigma^{nd}: \{g, f\} \to \mathcal{P}(W_{\tau_2}^F(X_2))$ be defined by $\sigma^{nd}(g) := \{f(x_{r(1)}, x_{r(2)})\}, \sigma^{nd}(f) := \{g(x_{s(1)}, x_{s(2)})\}.$ Then we have

Example

Let $s:\{1,2\} \to \{1,2\}$ and $r:\{1,2\} \to \{1,2\}$ which are defined by s(1)=2, s(2)=1 and r(1)=1, r(2)=2. Let $T=\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)})),f(x_{r(1)},x_{r(2)})\}$, and let $\sigma^{nd}:\{g,f\} \to \mathcal{P}(W_{\tau_2}^F(X_2))$ be defined by $\sigma^{nd}(g):=\{f(x_{r(1)},x_{r(2)})\},\sigma^{nd}(f):=\{g(x_{s(1)},x_{s(2)})\}$. Then we have $\hat{\sigma}^{nd}(T)=\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)})),f(x_{r(1)},x_{r(2)})\})$

Example

Let $s: \{1,2\} \to \{1,2\}$ and $r: \{1,2\} \to \{1,2\}$ which are defined by s(1) = 2, s(2) = 1 and r(1) = 1, r(2) = 2. Let $T = \{g(f(x_{r(1)}, x_{r(2)}), g(x_{s(1)}, x_{s(2)})), f(x_{r(1)}, x_{r(2)})\}$, and let $\sigma^{nd}: \{g, f\} \to \mathcal{P}(W_{\tau_2}^F(X_2))$ be defined by $\sigma^{nd}(g) := \{f(x_{r(1)}, x_{r(2)})\}, \sigma^{nd}(f) := \{g(x_{s(1)}, x_{s(2)})\}$. Then we have $\hat{\sigma}^{nd}(T) = \hat{\sigma}^{nd}(\{g(f(x_{r(1)}, x_{r(2)}), g(x_{s(1)}, x_{s(2)})), f(x_{r(1)}, x_{r(2)})\})$ $= \hat{\sigma}^{nd}(\{g(f(x_{r(1)}, x_{r(2)}), g(x_{s(1)}, x_{s(2)}))\} \bigcup \hat{\sigma}^{nd}(\{f(x_{r(1)}, x_{r(2)})\}).$

$$\begin{split} & \hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ & = S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\})) \end{split}$$

$$\begin{split} & \hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ & = S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ & = S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\})_r,(\{f(x_{r(1)},x_{r(2)})\})_s) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\})_r,(\{f(x_{r(1)},x_{r(2)})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{2},x_{1})\})_r,(\{f(x_{1},x_{2})\})_s) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\})_r,(\{f(x_{r(1)},x_{r(2)})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{2},x_{1})\})_r,(\{f(x_{1},x_{2})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),\{g(x_{r(2)},x_{r(1)})\},\{f(x_{s(1)},x_{s(2)})\}) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\})_r,(\{f(x_{r(1)},x_{r(2)})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{2},x_{1})\})_r,(\{f(x_{1},x_{2})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),\{g(x_{r(2)},x_{r(1)})\},\{f(x_{s(1)},x_{s(2)})\})\\ &=S^2_{nd}(\{f(x_{r(1)},x_{r(2)})\},\{g(x_{2},x_{1})\},\{f(x_{2},x_{1})\}) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\}_r,(\{f(x_{r(1)},x_{r(2)})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{2},x_{1})\}_r,(\{f(x_{1},x_{2})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),\{g(x_{r(2)},x_{r(1)})\},\{f(x_{s(1)},x_{s(2)})\})\\ &=S^2_{nd}(\{f(x_{r(1)},x_{r(2)})\},\{g(x_{2},x_{1})\},\{f(x_{2},x_{1})\})\\ &=S^2_{nd}(\{f(x_{1},x_{2})\},\{g(x_{2},x_{1})\},\{f(x_{2},x_{1})\}) \end{split}$$

$$\begin{split} &\hat{\sigma}^{nd}(\{g(f(x_{r(1)},x_{r(2)}),g(x_{s(1)},x_{s(2)}))\}\\ &=S^2_{nd}(\sigma^{nd}(g),\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\}),\hat{\sigma}^{nd}(\{g(x_{s(1)},x_{s(2)})\}))\\ &=S^2_{nd}(\sigma^{nd}(g),(\sigma^{nd}(f))_r,(\sigma^{nd}(g))_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{s(1)},x_{s(2)})\})_r,(\{f(x_{r(1)},x_{r(2)})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),(\{g(x_{2},x_{1})\})_r,(\{f(x_{1},x_{2})\})_s)\\ &=S^2_{nd}(\sigma^{nd}(g),\{g(x_{r(2)},x_{r(1)})\},\{f(x_{s(1)},x_{s(2)})\})\\ &=S^2_{nd}(\{f(x_{r(1)},x_{r(2)})\},\{g(x_{2},x_{1})\},\{f(x_{2},x_{1})\})\\ &=S^2_{nd}(\{f(x_{1},x_{2})\},\{g(x_{2},x_{1})\},\{f(x_{2},x_{1})\})\\ &=\{f(r_{1},r_{2})\mid r_{1}\in\{g(x_{2},x_{1})\},r_{2}\in\{f(x_{2},x_{1})\}\}\\ &=\{f(g(x_{2},x_{1}),f(x_{2},x_{1}))\}\text{ and} \end{split}$$

$$\hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} \quad = \quad (\sigma^{nd}(f))_r$$

$$\begin{array}{lcl} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} & = & (\sigma^{nd}(f))_r \\ & = & (\{g(x_{s(1)},x_{s(2)})\})_r \end{array}$$

$$\begin{array}{lcl} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} & = & (\sigma^{nd}(f))_r \\ & = & (\{g(x_{s(1)},x_{s(2)})\})_r \\ & = & (\{g(x_2,x_1)\})_r \end{array}$$

$$\begin{array}{lll} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} & = & (\sigma^{nd}(f))_r \\ & = & (\{g(x_{s(1)},x_{s(2)})\})_r \\ & = & (\{g(x_2,x_1)\})_r \\ & = & \{g(x_{r(2)},x_{r(1)})\} \end{array}$$

$$\begin{array}{lll} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} & = & (\sigma^{nd}(f))_r \\ & = & (\{g(x_{s(1)},x_{s(2)})\})_r \\ & = & (\{g(x_2,x_1)\})_r \\ & = & \{g(x_{r(2)},x_{r(1)})\} \\ & = & \{g(x_2,x_1)\}. \end{array}$$

```
\begin{array}{lll} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} &=& (\sigma^{nd}(f))_r\\ &=& (\{g(x_{s(1)},x_{s(2)})\})_r\\ &=& (\{g(x_2,x_1)\})_r\\ &=& \{g(x_{r(2)},x_{r(1)})\}\\ &=& \{g(x_2,x_1)\}. \end{array} Therefore we have that \hat{\sigma}^{nd}(T) &=& \{f(g(x_2,x_1),f(x_2,x_1))\}\bigcup\{g(x_2,x_1)\}
```

```
\begin{array}{lll} \hat{\sigma}^{nd}(\{f(x_{r(1)},x_{r(2)})\} &=& (\sigma^{nd}(f))_r\\ &=& (\{g(x_{s(1)},x_{s(2)})\})_r\\ &=& (\{g(x_2,x_1)\})_r\\ &=& \{g(x_{r(2)},x_{r(1)})\}\\ &=& \{g(x_2,x_1)\}. \end{array} Therefore we have that \hat{\sigma}^{nd}(T) &=& \{f(g(x_2,x_1),f(x_2,x_1))\} \bigcup \{g(x_2,x_1)\}.
```

 $= \{f(q(x_2,x_1),f(x_2,x_1)),q(x_2,x_1)\}.$

Let T be a subset of $W_{\tau_n}^F(X_n)$ and $s \in H_n$. Then we have

$$\hat{\sigma}^{nd}[T_s] = (\hat{\sigma}^{nd}[T])_s.$$

Let T be a subset of $W_{\tau_n}^F(X_n)$ and $s \in H_n$. Then we have

$$\hat{\sigma}^{nd}[T_s] = (\hat{\sigma}^{nd}[T])_s.$$

Theorem 5

A mapping $\hat{\sigma}^{nd}: \mathcal{P}(W_{\tau_n}^F(X_n)) \to \mathcal{P}(W_{\tau_n}^F(X_n))$ is an endomorphism of $nd\text{-}clone_F\tau_n$.

Let
$$\sigma_1^{nd}, \sigma_2^{nd} \in nd\text{-}Hyp^F(\tau_n)$$
.

Let $\sigma_1^{nd}, \sigma_2^{nd} \in nd\text{-}Hyp^F(\tau_n)$. Since the extension of non-derministic full hypersubstitution maps $\mathcal{P}(W_{\tau_n}^F(X_n))$ to $\mathcal{P}(W_{\tau_n}^F(X_n))$ we may define a product $\sigma_1^{nd} \circ_{nd} \sigma_2^{nd}$ by

$$\sigma_1^{nd} \circ_{nd} \sigma_2^{nd} := \hat{\sigma}_1^{nd} \circ \sigma_2^{nd}.$$

Here \circ is the usual composition of mappings. Since $\hat{\sigma}_1^{nd} \circ \sigma_2^{nd}$ maps $\{f_i \mid i \in I\}$ to $\mathcal{P}(W_{\tau_n}^F(X_n))$, it is a non-derterministic full hypersubstitution.

Let $\sigma_1^{nd}, \sigma_2^{nd} \in nd\text{-}Hyp^F(\tau_n)$. Then we have

$$(\sigma_1^{nd} \circ_{nd} \sigma_2^{nd})\hat{\ } = \hat{\sigma}_1^{nd} \circ \hat{\sigma}_2^{nd}.$$

Let $\sigma_1^{nd}, \sigma_2^{nd} \in nd\text{-}Hyp^F(\tau_n)$. Then we have

$$(\sigma_1^{nd} \circ_{nd} \sigma_2^{nd})^{\hat{}} = \hat{\sigma}_1^{nd} \circ \hat{\sigma}_2^{nd}.$$

Lemma 7

The binary operation \circ_{nd} is associative.

Let $\sigma_1^{nd}, \sigma_2^{nd} \in nd\text{-}Hyp^F(\tau_n)$. Then we have

$$(\sigma_1^{nd} \circ_{nd} \sigma_2^{nd})^{\hat{}} = \hat{\sigma}_1^{nd} \circ \hat{\sigma}_2^{nd}.$$

Lemma 7

The binary operation \circ_{nd} is associative.

Let $\sigma_{id}^{nd} \in nd\text{-}Hyp^F(\tau_n)$. We define $\sigma_{id}^{nd}(f_i) := \{f_i(x_1, \dots, x_n)\}$ and the next lemma we show that the extension of σ_{id}^{nd} is an identity mapping.

Let $T \subseteq W_{\tau_n}^F(X_n)$ be a subset of $W_{\tau_n}^F(X_n)$. Then we have

$$\hat{\sigma}_{id}^{nd}[T] = T.$$

Let $T \subseteq W_{\tau_n}^F(X_n)$ be a subset of $W_{\tau_n}^F(X_n)$. Then we have

$$\hat{\sigma}_{id}^{nd}[T] = T.$$

Lemma 9

The σ_{id}^{nd} in nd- $Hyp^F(\tau_n)$ is an identity element in the set nd- $Hyp^F(\tau_n)$ with respect to the associative binary operation \circ_{nd} .

Let $T \subseteq W_{\tau_n}^F(X_n)$ be a subset of $W_{\tau_n}^F(X_n)$. Then we have

$$\hat{\sigma}_{id}^{nd}[T] = T.$$

Lemma 9

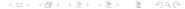
The σ_{id}^{nd} in nd- $Hyp^F(\tau_n)$ is an identity element in the set nd- $Hyp^F(\tau_n)$ with respect to the associative binary operation \circ_{nd} .

Theorem 10

The structure $(nd\text{-}Hyp^F(\tau_n); \circ_{nd}, \sigma_{id}^{nd})$ is a monoid.

References I

- [1] K. Denecke and P. Jampacchon, *Clones of Full Terms*, Algebra Discrete Math. (2004), no. 4, 1–11.
- K. Denecke, P. Glubudom and J. Koppitz, Power Clones and Non-Deterministic Hypersubstitutions, Asian-European J. Math. Vol 1 (2)(2008)
 177–188.
- [3] E. Graczyńska, D. Schweigert, Hypervarieties of a given type, Algebra Universalis, 27(1990), 305–318.
- [4] Denecke K. and Freiberg L., *The Algebra of Strongly Full Terms*, Novi Sad J. Math. **2** (2004), 87–98.



References II

- [5] Denecke K., Lau D., Pöschel R. and Schweigert D., Hyperidentities, Hyperequational clases and clone congruences, Contribution to General Algebra 7, Wien: Verlag Hölder-Pichler-Tempsky, (1991), 97–118.
- [6] Denecke K., and Wismath S. L., *Universal Algebra and Applications in Theoretical Computer Science*, Chapman & Hall/CRC, Boca Raton, (2002).

Thank You For Yours Attentions