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The aim of this reseach is to shows that the structure

(nd'Hpr(Tn); Onds Ji’ﬁld) is a monoid.
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Now we consider algebras of n-ary type, that is, all operation
symbols have the same fixed arity n. Let 7, be such a fixed
n-ary type with operation symbols (f;)ies indexed by some set
1.
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|
Now we consider algebras of n-ary type, that is, all operation
symbols have the same fixed arity n. Let 7, be such a fixed

n-ary type with operation symbols (f;);es indexed by some set
1.

Definition([1

Let H,, be the set of all permutations
s:{l,...,n} = {1,...,n} and let f; be an operation symbol of
type 7,. Full terms of type 7, are defined in the following way:

(1) fi®sqa),-- > Ts(n)) is a full term of type 7.

(2) If tq,...,t, are full terms of type 7,, then f;(t1,...,t,) is a
full term of type 7,.

We denoted by WZ (X,,) the set of all full terms of type 7.
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Example

Let s: {1,2} — {1,2} and r: {1,2} — {1,2} which are defined
by s(1) =2,s(2) =1 and r(1) = 1,7(2) = 2. Then
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Example

Let s: {1,2} — {1,2} and r: {1,2} — {1,2} which are defined
by s(1) =2,s(2) =1 and r(1) = 1,7(2) = 2. Then

(1) g(ws01), Ts(2)) = g(x2,71),
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Example

Let s: {1,2} — {1,2} and r: {1,2} — {1,2} which are defined
by s(1) =2,s(2) =1 and r(1) = 1,7(2) = 2. Then

(1) g(zg1)s Ts(2)) = g(T2, 21),

(2) f(zr1)s Zr(2)) = f(21,22) and
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Example

Let s: {1,2} — {1,2} and r: {1,2} — {1,2} which are defined
by s(1 ) =2,5(2) =1and r(1) =1,7(2) = 2. Then

(1) 9(ws1), T5(2)) = g(w2, 71),

(2) ( Ty(1): Tr(2)) = [ (21, 22) and

(3) f(g(3327$1),f(331,$2)),

are full terms of type 7o = (2,2).
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Definition([1])

Let W' (X,,) be a set of full terms of type 7,. Then the
superposition operations

S™ (WE (X))t — WE(X,),

are defined in the following way: For
t,tq € WTFH(Xn),l <g<n,neN, we have

(1) ift = fi(wg1),- -, Ty(n)) for s € Hy, then
Sn(fi(ajs(l)a s 7xs(n))at1a cee tn) = fi(ts(l)a s 7ts(n))a
(2) if t = fi(s1,...,sn) and if we assume that S"(sq,t1,...,tp)
are already defined, then
Sn( Z‘(Sl,...,sn),tl,...,tn) =
Fi(S™(s1,t1, -y tn)so o, S™(Spyt1y ooy tn))-

Lekkoksung




For a full term ¢ we need the full term ¢, arising from ¢ by
replacement a variable z;,1 <4 <n in ¢ by a variable z ;) for a
permutation s € H,,. This can be defined as follows:




Preliminaries

For a full term ¢ we need the full term ¢, arising from ¢ by
replacement a variable z;,1 <4 <n in ¢ by a variable z ;) for a
permutation s € H,,. This can be defined as follows:

Let ¢ be a full term in W (X,,) and let s,r € H,,. We define
the full term ¢, in the following step:

Somsak Lekkoksung

Nd-Full Hype: titutions



Preliminaries

For a full term ¢ we need the full term ¢, arising from ¢ by
replacement a variable z;,1 <4 <n in ¢ by a variable z ;) for a
permutation s € H,,. This can be defined as follows:

Let ¢ be a full term in W (X,,) and let s,r € H,,. We define
the full term ¢, in the following step:

(1) Ift = fi(xr(1)7 cee ,.%'r(n)), then g 5= fi(xs(r(l))7 ce axs(r(n)))'
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For a full term ¢ we need the full term ¢, arising from ¢ by
replacement a variable z;,1 <4 <n in ¢ by a variable z ;) for a
permutation s € H,,. This can be defined as follows:

Let ¢ be a full term in W (X,,) and let s,r € H,,. We define
the full term ¢, in the following step:

(1) Ift = fi(xr(1)7 oo ,.%'r(n)), then ts = fi(xs(r(l))7 e axs(r(n)))'
(2) Ift= fi(tr(l)a 0009 atr(n))a then ¢ := fi(ts(r(l))> 000 7ts(r(n)))'
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Example

Let s:{1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let
t = flg(ws1), Ts(2)), f(2r), Tp2))). Then
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Example

Let s:{1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let
t = f(g(wy1)s Ts(2))s f(Tr(1), Tp(2))). Then

ts = (f(9(zs1)s Ts2))s f(@r(1), Tr(2))))s
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Example

Let s:{1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let
t = flg(wy)s ﬂfs(z)) f(xr(l)vxr@)))' Then

ts = ( (gg ) f(xr(l)axrﬂ))))s

= (f(g 9627931) (f017332)))s
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Example

Let s:{1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let
t= f(g(wy1), T2 )) f( r(1)s Tr(2)))- Then
ls = ( (g( ) f(xr(l)axrﬂ))))s
= (fly (9027331) (f017332)))s
= f9(@s2), Ts1)), F(Ts(1)s To(2)))
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Example

Let s:{1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let
t=fl9(zs1), 252 )) f( r(1)> Tr(2)))- Then

ts = (fl9(zs1)s Ts(2), F(Tr(1), Tr2))))s
= (f(g (9027331) (f017332)))s
= f(9(mg2), Ts1))s f(Ts1), To(2)))

) (1), Ts(2
flg(z1,22), f(22,21)).
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Let W (X,,) be a set of all full terms of type 7, and let T be a
subset of W1 (X,) and s € H,. Then we set

o [t [teWI(X)} i T 50
T if 7= 0.
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Definition

Let W;_i (X,) be a set of all full terms of type 7, and s € H,,.
Then the superposition operations
s (POVE(X))™ = PW (X)),

for T, T, C Wf;(Xn), 1 < g <n,n € N such that T, T, are
non-empty sets, the S”,(T,T1,...,T,) are defined in the
following way:
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Definition

Let W;_i (X,) be a set of all full terms of type 7, and s € H,,.
Then the superposition operations

s (POVE(X))™ = PW (X)),
for T, T, C Wf;(Xn), 1 < g <n,n € N such that T, T, are
non-empty sets, the S”,(T,T1,...,T,) are defined in the
following way:
(1) IfT = {fi(xs(l)a e ,[L’s(n))}, then
Sgd({fi(xs(l)’ (RS $s(n))}a T, ... 7Tn) = {fi(ts(l)a s ats(n)) ‘
tsg) € Ts(q}-
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Definition

Let W;_i (X,) be a set of all full terms of type 7, and s € H,,.
Then the superposition operations
s (POVE(X))™ = PW (X)),

for T, T, C Wf;(Xn), 1 < g <n,n € N such that T, T, are

non-empty sets, the S”,(T,T1,...,T,) are defined in the

following way:

(1) IfT = {fi(xs(l)a e ,[L’s(n))}, then
Shalfi@say s Te@m) b 11y - Tn) = {filtsrys - -+ 1 Es(n)) |
ls(q) € TS(Q)}'

(2) ¥T ={fi(t1,...,tn)}, then
Sﬁd({fi(tla - ,tn)},Tl, - ,Tn) = {fi(Tl, - ,’l“n) ‘ Tq €
Sta{ted, Th, .. Th)
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Definition

Let W;_i (X,) be a set of all full terms of type 7, and s € H,,.
Then the superposition operations
e (PWE (X)) = PWE (X)),

for T, T, C Wf;(Xn), 1 < g <n,n € N such that T, T, are

non-empty sets, the S”,(T,T1,...,T,) are defined in the

following way:

(1) IfT = {fi(xs(l)a e ,[L’s(n))}, then
Sra{fi(xgys - s ) b Tas -+ Tn) i= { filtsays -+ 5 o)) |
ts(q) € Ts(q)}-

(2) ¥T ={fi(t1,...,tn)}, then
Sﬁd({fi(tla - ,tn)},Tl, - ,Tn) = {fi(Tl, - ,’l“n) ‘ Tq €

Sr{te Th, . Th) )
(3) If T is an arbltrary subset of WX (X,,), then




Preliminaries

Definition (continuous)

If one of the sets T,T1,...,T, is an empty set, then
St T, Ty) = 0.

n
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Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let

T ={9(s1) Ts(2))s f(@r()s Tr2) 1 T1 = {f (T (1), Tr(2)) } and
Ty = {g(z51), T52)) }- Then we have
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Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined

by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let

T ={9(s1) Ts(2))s f(@r()s Tr2) 1 T1 = {f (T (1), Tr(2)) } and

Ty = {g(z51), T52)) }- Then we have

S2i{g(zsay 252) 1, 1, To) = SEy({g(xa, 1)}, T, To)

= {g(va,v1) | v2 € Tp,vy € T1}
= {9(9(zs1) T52), [ (@Tr(1)s Tr2))) }
= {9(9(332,931), f(xlva))} and7
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Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined

by s(1) =2,s(2) =1 and (1) = 1,7(2) = 2. Let

T ={9(s1) Ts(2))s f(@r()s Tr2) 1 T1 = {f (T (1), Tr(2)) } and

Ty = {g(z51), T52)) }- Then we have

Snaa(zsy zs2) b T o) = Sk ({g(az,21)},Th, To)

= {g(vo,v1) | va € To,v1 € T1}
= {9(9(zs1) T52), [ (@Tr(1)s Tr2))) }
= {g(g(xg,xl), f(wlva))} and,

Szd({f(‘rr(l)axr(2))}7T17T2) = Sr%d({f($17$2)}7T17T2)
= {f(ul,uQ) | up € T, ug € Tg}
= {f(f(zrq), Tp2)), 9(T51), Ts(2)))
= {f(f ($1,9€2)79($2,$1))}-

Therefore we have
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Example (Continuous)

S%d(ﬂ T, Tp) = 5721 ({g(zs 3(2)) f(xr(l)axr(2))}7T1;T2)

Sz ({g(x%xl) ($1,$2)} T17T2)

Sza{g(wa, x1)}, Tu, To) U Spg({ f (21, 22)}, Th, To)
}9( E%’z?l’l) Exhl’z))} U{f(f (21, 22), g(z2, 1))
g\g X1,

(

r2)), f(f(z1,22), (w2, 71))}.

x2,21), f
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Proposition 1

Let T,T, C W (X,),1<g¢<n,neNands e H,. Then we
have

(1) Spg(Ts, T1, - -, Tn) = Spg(T, T(ry, - - -5 Ty(m))-

Somsak Lekkoksung
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Proposition 1
Let T,T, C W (X,),1<g¢<n,neNands e H,. Then we

have

(1) Spa(Ts; T, Tn) = Spy(Ts Toay, - -5 To(my)-

mn

(2) S3,(Ts, T, ..., Tn) = (Spy (T, T, . .., Th)) s

Somsak Lekkoksung
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Proposition 1
Let T,T, C W (X,),1<g¢<n,neNands e H,. Then we
have

(1) Spa(Ts; T, Tn) = Spy(Ts Toay, - -5 To(my)-

mn

(2) S3,(Ts, T, ..., Tn) = (Spy (T, T, . .., Th)) s

Proposition 2

Let T,T, C WTFn(Xn),l <g<n,neNand s e H, Then we
have

Somsak Lekkoksung
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Proposition 1
Let T,T, C W (X,),1<g¢<n,neNands e H,. Then we
have

(1) Spa(Ts; T, Tn) = Spy(Ts Toay, - -5 To(my)-

mn

(2) S3,(Ts, T, ..., Tn) = (Spy (T, T, . .., Th)) s

Proposition 2

Let T,T, C WTFn(Xn),l <g<n,neNand s e H, Then we
have

nd (L Ts1ys -+ Tomy) = (Spa(T, T, - -, Th))s-

e

Somsak Lekkoksung
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Theorem 3

|
Let T, T, S, C WTIZ(X,L), 1 < qg <n,n €N be the set of full
terms of type 7,,. Then we have
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Theorem 3

|
Let T, T, S, C WTIZ(X,L), 1 < qg <n,n €N be the set of full
terms of type 7,,. Then we have

SE(T,Sn (S, T, Tn)y oo, Sey(Sny T,y - -, 1))

=SS (T, S1,...,5),T1,...,Ty)

ak Lekkoksung
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Theorem 3

Let T, T, S, C WTIZ(X,L), 1 < qg <n,n €N be the set of full
terms of type 7,,. Then we have

SP T, 8™ (81, Th, - To)s s Sy (S, T, - T))
= »rrzld( gd(Ta 517 .. "S’n)aTl; cee 7Tn)

Using this superposition operation we can forms algebra
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Theorem 3

|
Let T, T, S, C WTIZ(X,L), 1 < qg <n,n €N be the set of full
terms of type 7,,. Then we have

SE(T,Sn (S, T, Tn)y oo, Sey(Sny T,y - -, 1))

=SS (T, S1,...,5),T1,...,Ty)

Using this superposition operation we can forms algebra
F
(P(Wr,(Xn)); Spa)

of type n + 1.
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Theorem 3

|
Let T, T, S, C WTIZ(X,L), 1 < qg <n,n €N be the set of full
terms of type 7,,. Then we have

SE(T,Sn (S, T, Tn)y oo, Sey(Sny T,y - -, 1))

=SS (T, S1,...,5),T1,...,Ty)

Using this superposition operation we can forms algebra
(P(W(X0)); Shia)
of type n + 1.This algebra is called

nd-clonepy,.
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Definition

A mapping o™ : {f; | i € I} = P(WE(X,,)) is called
non-deterministic full hypersubstitution or nd-full
hypersubstitution, for short. Let nd-Hyp® (7,) be a set of all
nd-full hypersubstitutions. Any such nd-full hypersubstitution,
o™ uniquely determine a mapping

" PWE (X)) = POWE (X)),

is defined in the following way:

Somsak Lekkoksung
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Definition (Continuous)

ersubstitution:



Monoid Nd-Full Hypersubstitutions

Definition (Continuous)

(1) 6™[0] = 0.
(2) 6”d[{fi(ajs(1), o Ty }] = (6™(f:))s for every s € Hy,.

Somsak Lekkoksung
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Definition (Continuous)

(1) 6™[0] = 0.
(2) 6”d[{fi(ajs(1), o Ty }] = (6™(f:))s for every s € Hy,.

(3) &nd[{ Z(tlv ol )H =
Sno(am(f:), 6™ [{t1}], ..., 6"{t,}]) and we assume that
6™ [{t1}],...,6™[{t,}] are already defined.

Lekkoksung




Monoid Nd-Full Hypersubstitutions

Definition (Continuous)

5.nd[@]

6”d[{f2(ajs(1), o Ty }] = (0™(f;))s for every s € H,.

&nd[{ Z(tlv R )H =

Sﬁ (a™(f), 6™ [{t1}], ..., 6" [{t,}]) and we assume that

6™ [{t1}],...,6™[{t,}] are already defined.

6™ (T) := U 6"[{t}] where T is an arbitrary subset of
teT




Monoid Nd-Full Hypersubstitutions

Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s5(2) =1and r(1) = 1,7(2) = 2.

Let T = {g(f(zrq), Zr(2)) 9(Ts(1), Ts(2)), [ (Tr(1), Tr(2)) }, and let
o™ {g, f} = P(WE(X3)) be defined by

Und(g) = {f($r(1),$r(2))},0n ( ) - {g( Ts(1)> )} Then we

have

Somsak Lekkoksung
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Monoid Nd-Full Hypersubstitutions

Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s5(2) =1and r(1) = 1,7(2) = 2.

Let T = {g(f(zrq), Zr(2)) 9(Ts(1), Ts(2)), [ (Tr(1), Tr(2)) }, and let
o™ {g, f} = P(WE(X3)) be defined by

Und(g) = {f(xr(l)axr@))}?a ( ) - {g( Ts(1)> )} Then we

have

&nd<T) = ({g( ( (1)» T(Q))vg(xs(1)7$s(2)))7f(xr(1)7xr(2))})

Somsak Lekkoksung
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Example

Let s: {1,2} — {1,2} and r : {1,2} — {1, 2} which are defined
by s(1) =2,s5(2) =1and r(1) = 1,7(2) = 2.
Let T = {g(f(zrq), Zr(2)) 9(Ts(1), Ts(2)), [ (Tr(1), Tr(2)) }, and let
o™ {g, f} = P(WE(X3)) be defined by
gnd(g) = {f(xr(l)axr@))}?a ( ) - {g( Ls(1)> )} Then we
ave
&nd<T) = ({g( ( (1)» 7“(2))7 g( Ts(1)s ms(?)))? f(xr(1)7xr(2))})
"U{g(f (1), To(2)) 9(Ts(1) Ts(2)) U
" f (1), Tr2) })-

Q>

Somsak Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

Let us consider the following equations:
" ({g(f(xr)> Tr(2)), 9(Ts1) Ts(2))) }
= S?@d(o—nd(g)v a—nd({f(wr(l) ) xr(?))})v &nd({g(xs(l)a 1'5(2))}))

Somsak Lekkoksung
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Example (Continuous)

Let us consider the following equations:

" {g(f (@r)s Tr(2)) 9(Ts(1), Ts2))) }

= S24(0™(9), 6™ ({f (zr(1) 2r(2))}), 6 ({g(501), T5(2)) )
= 5240 (9), (6" (f))r. (0"(9))s)

Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

Let us consider the following equations:

" ({g(f(xr)> Tr(2)), 9(Ts1) Ts(2))) }

= Snalo ”d() "d({f( 1) Zr2) 1)s 6" ({9(2 1), 25(2))}))
= Spalo "d( ), (")) ( "(9))s)

= S24(0™(9), {9(zs)> Ts2) s ({f (@r2)s r(2)) ) s)

Somsak Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

Let us consider the following equations:
" ({g(f(z, )%(2)%9(%(1),%(2)))}
= Spa(o™(g ) ({f( W) Tr(2))}1): 0" ({9(2501) 25(2))})
= S24(0"(9), (0™ (f))r, (U"d(g))s)
= S?Ld(o-nd(g)a ({g(xs(l Ts(2 )})T’ ({f(xr L ( ))})S)
= S34(0™(9), ({g(wz’fﬁl)})r, ({f(fvaz)}) )
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Example (Continuous)

Let us consider the following equations:

6™ ({g(f (xr(1), fﬂr(z)),g(fﬁs(1),$s(2)))}
= S24(0™(9), 6™ ({f (zr(1) 2r(2))}), 6 ({g(501), T5(2)) )
= S24(0"(g), (6" (f))r. (0"(9))s)
= S?Ld(o-nd(g)a ({g(xs(l Ts(2 )})T’ ({f(xr L ( ))})S)
= S24(0™(9), ({g(wz’fvl)})r, ({f(fvaz)}) )
:szd(and(g)7{9($r(2)a )} {f (=, (1), )})

Somsak Lekkoksung




Monoid Nd-Full Hyp

Example (Continuous)

Let us consider the following equations:

" ({g(f(xr)> Tr(2)), 9(Ts1) Ts(2))) }

= Spa(o™(g ) "d({f( 1) Zr2) 1)s 6" ({9(2 1), 25(2))}))
= S24(0"(9), (0™ (f))r, (U"d(g))s)

- Sr%d(o-nd(g)a({g(xs(l Ls(2 )})T’({f(xr Lr( ))})S)
=Sz (U"d(g)»({9($2,$1)})r7({f(fvaz)}) )

_S2 (Und g) {g( Tr2), )} {f( 1), )})

—szd( f(@r), Tr(2)} {9(902,96‘1)} {f(:cz,x1)})
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Example (Continuous)

Let us consider the following equations:

" ({g(f (=, )%(2)%9(%(1),%(2)))}

= 870" (g ) M (@), 22)}) 0" ({9 (@501 25(2)) 1)
= S24(0™(9), (@™ ()r: (0"(9))s)

= S?Ld(o-nd(g)a ({g(xs(l Ts(2 )})T’ ({f(xr L ( ))})S)

=87 ,(0"(g), ({9(362’1‘1)})m({f(fﬂl,ﬂﬁz)}) )

= Sﬁd(and( )7 {g(xr(Q)a )} {f( 1), )})

= S2,({f(x r(1)7$r(2))},{9($2a$1)} {f(:cz,x1)})

= Szbd({f(xh ‘T?)}v {g<$27 xl)}v {f(.%‘g, xl)})

Somsak Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

Let us consider the following equations:

" ({g(f(xr)> Tr(2)), 9(Ts1) Ts(2))) }

= 520" (g ) "d({f( 1 2r2)}), 6" ({g(x51), 52))}))
= S2,(0™(9), (" (f))r, ( "(g))s)

_S?ld( nd(g)a({g(xs(l Ts(2 )})T’({f(xr L ( ))})S)

= S2,(0"(g), ({9(962’1‘1)})7«7({f(fvwﬁz)}) )

—Sﬁd(ff"d( ), 19(Tr(2), Tr(1) 1 A (1) T(2)) )

= S2,({f (@) o(2)} {9(902,96‘1)} {f(:cz,x1)})

= Sﬁd({f(xhw)}v {9z, 21)}, {f(w2,21)})

={f(r1,7m2) | r1 € {g(x2,21)}, 72 € {f(x2,21)}}
= {f(g9(w2,21), f(x2,21))} and




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

6nd({f(x7‘(1)v xr(?))} = (O-nd(f))r

Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

6nd({f(x7‘(1)vxr(2))} = ( nd(f))r
= ({9(zs1), zs(2) e

Somsak Lekkoksung
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Monoid Nd-Full Hypersubstitutions

Example (Continuous)

6nd({f(x7‘(1)v xr(?))} = ( nd(f))r
= ({9(@sq) z52)) Dr
= ({9(1‘2»331)})

Somsak Lekkoksung
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Monoid Nd-Full Hypersubstitutions

Example (Continuous)

" ({f (@@ or@)t = (0" ()
g( Ts(1)s T ))})7‘

C
({

= ({9(1‘2»331)})
{ ( 7"(1))}

Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

6" ({f (zr1), Tr(2))} (" (f))r
({g( Ts(1)s T ))})r
({9(1‘2»331)})
= {g( 7"(1))}
= {u(

g 332,331)}

Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

" ({f (xr1), Tr(2))} (0" (f))r
({g(zs1y, T5(2)) })r
= ({9(962»331)})
{g( )» 7"(1))}
9(3327331)}-
Therefore we have that

{
"(T) = {flg(xz, 1), flz2,21))} U{g(a2, 1)}

Somsak Lekkoksung




Monoid Nd-Full Hypersubstitutions

Example (Continuous)

6" ({f (zr1), Tr(2))} (" (f))r
= ({9(335(1)7135(2))})7‘
= ({9(1»‘2»931)})
= {g( 7"(1))}
{9(332,331)}
Therefore we have that
o"(T) = {f(g(xz,x1), f(w,21))} U{g(w2,21)}
= {f(g(z2,21), f(22,71)), g(2, 71) }-

Somsak Lekkoksung
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Monoid Nd-Full Hypersubstitutions

Lemma 4

Let T be a subset of W/ (X,,) and s € H,,. Then we have

6™[Ty] = (6™[T1)s.

Nd-Full Hypersub
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Lemma 4
Let T be a subset of W' (X,,) and s € H,,. Then we have

6™[Ty] = (6™[T1)s.

Theorem 5
A mapping 6" : P(WE (X,)) = P(WE(X,)) is an
endomorphism of nd-clonepT,.

of Nd-Full
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Let o7, 034 € nd-Hyp" (1,).




Monoid Nd-Full Hypersubstitutions

Let o7, 03¢ € nd-Hyp" (). Since the extension of
non-derministic full hypersubstitution maps P(W/ (X,,)) to
P(WF(X,)) we may define a product o7¢ 0,4 5% by

o opg 084 = 674 o o

Here o is the usual composition of mappings. Since &{Ld o Ugd
maps {f; | i € I} to P(WL (X)), it is a non-derterministic full
hypersubstitution.

k Lekkoks
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Monoid Nd-Full Hypersubstitutions

Lemma 6

Let o7% o0 € nd-Hyp™ (1,,). Then we have

nd nd . ~nd
(o1 1 0

ona 03%)" = 677 0 6%

Nd-Full Hypersub



Monoid Nd-Full Hypersubstitutions

Lemma 6

Let o7, 03¢ € nd-Hyp™ (1,,). Then we have

(07 ong 03%)" = 674 0 637,

Lemma 7

The binary operation o,y is associative.

Nd-Full Hypersub



Monoid Nd-Full Hypersubstitutions

Lemma 6

Let o7, 03¢ € nd-Hyp™ (1,,). Then we have
(079 opa 03%)" = 677 0 637,

Lemma 7

The binary operation o,y is associative.

—
Let 07 € nd-Hyp" (1,,). We define o7(f;) := {fl(:cl,... n)}
and the next lemma we show that the extension of o d is an
identity mapping.




Monoid Nd-Full Hypersubstitutions

Lemma 8

Let T C WE (X,) be a subset of W (X,,). Then we have

sMT) =T.

Nd-Full Hypersub



Monoid Nd-Full Hype

Lemma 8
Let T C W (X,) be a subset of WY (X,,). Then we have

sMT] =T.

Lemma 9
The o in nd-Hyp® (7, is an identity element in the set
nd-Hyp* (1) with respect to the associative binary operation

Ond-

of Nd-Full



Monoid Nd-Full Hypersubstitutions

Lemma 8
Let T C W (X,) be a subset of WY (X,,). Then we have

sMT) =T.

Lemma 9

The o in nd-Hyp® (7, is an identity element in the set
nd-Hyp* (1) with respect to the associative binary operation

Ond-

The structure (nd-Hyp® (1,,); ona, 07) is a monoid.

Theorem 10
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