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Poset-SAT

®... finite set of quantifier-free {<}-formulas

Poset-SAT ()

Instance:
e Variables {x1,...,x,} and
o finitely many formulas ¢;(xj,, ..., X; ), where each ¢; € ®.
Question:
Is A ¢i(xi, .. .,x;) satisfiable in a partial order?

Complexity of Poset-SAT(®) is always in NP.

For which ® is Poset-SAT(®) in P?
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Poset-SAT(<)

Instance: Variables {xi, ..., x,} and formulas x;, < xj,.
Question: Is \(x;, < x;,) satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT(L,Q)
x_Ly := incomparability relation
Q(x,y,z) =(x<yVx<z)

Poset-SAT(L, Q) is NP-complete.

A\
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Poset-SAT as CSP over the random poset

The random partial order P := (P; <) is the unique countable
partial order that:

@ is universal, i.e., contains all finite partial orders

@ is homogeneous, i.e. for finite A, B C P, every isomorphism
| : A — B extends to an automorphism o € Aut(P).

For every {<}-formula ¢(x1,...,x,) let
Ry :={(a1,...,an) € P": ¢(a1,...,an)}.

Poset-SAT(®) = CSP((P; Ry)gco).

(P; Ry)gco is a reduct of P, i.e. a structure that is first-order
definable in P.
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The universal algebraic approach

What did we gain?
@ We can use methods for CSPs
@ P has nice properties (homogeneous, w-categorical,...)

@ The universal algebraic approach works:

Let Pol(I") denote the polymorphism clone of ', i.e. f € Pol(T') if
for all relations R of I': 74,..., 7, € R — f(A,..., ) € R.

Theorem (Bodirsky, Nesetfil '06)

For w-categorical structures I, A, every relation in [ is
pp-definable in A if
Pol(I) © Pol(A)

— Aim: Understand the polymorphism clones of reducts of P!
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Automorphism groups

Theorem (Pach, Pinsker, Pongracz, Szabd ’14)

Let I be a reduct of P. Then Aut(I') is equal to one of the
following:
Sym(P)
: bijection with
|
{1,0) x<y+ x>y
/N e .
) () O: “rotation” at a generic
N upwards-closed set
Aut(P)
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© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).
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Endomorphism monoids

Proposition (MK, Trung Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,

© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

© 1l-element structures induces trivial CSPs.
@ CSPs on reducts of (Q, <): P or NP-c (Bodirsky, Kéra '10)
@ CSPs on reducts of (N, #): P or NP-c (Bodirsky, Kara '08)

— We only need to study CSP(I'), where Aut(l') = End(I).



Preclassification
oo

Outline

@ CSPs over the random partial order P
@ Preclassification by homomorphic equivalence
© Closed clones containing Aut(P)

Q@ Results



Closed clones containing Aut(P)
®0

Polymorphisms of higher arity

Let e< : (P; <)? — (P; <) be an embedding:

e<(x,y) Se<(X,y) e x <X Ay <y



Closed clones containing Aut(P)
®0

Polymorphisms of higher arity

Let e< : (P; <)? — (P; <) be an embedding:

e<(x,y) Se<(X,y) e x <X Ay <y

By Bodirsky, Chen, Kara, von Oertzen '09

If e< € Pol(I") every relation in " has a <-Horn definition:

(Xil < XJI) A (Xlé < XJQ) A (Xin < XJn) — (Xin+1 < Xjn+1) and
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In this case CSP(I") is in P.
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Polymorphisms of higher arity

Let e< : (P; <)? — (P; <) be an embedding:
e<(xy) Sec(y) e x<x' Ay <y

By Bodirsky, Chen, Kara, von Oertzen '09

If e< € Pol(I") every relation in " has a <-Horn definition:

(Xil < XJI) A (Xlé < XJQ) A (Xin < XJn) — (Xin+1 < Xjn+1) and

(xiy < x3) A (X < x35) -+ A (%, < x5,) = F.

In this case CSP(I") is in P.

Similarly: e< : (P; <)? = (P; <)

Problem: How does Pol(I") look like? When is e< € Pol(I')?
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Canonical functions

A function f : A — T is called canonical, if it maps tuples of the
same orbit of Aut(A) ~ A¥ to tuples of the same orbit of
Aut(l) ~ Tk,

o All & € Aut(P) are canonical from P — P

o P Pwithx<y<+ x>y

o e : (P;<)? — (P; <) is canonical

(P; <, <) is a Ramsey structure.

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in I there is a f € Pol(I') violating R.
Ramsey properties of P imply that there is a canonical function
g € Pol(I') violating R.

— Look for relations that imply NP-hardness.
— Use canonical functions for P.
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Complexity dichotomy

Theorem (MK, Trung Van Pham '16)
Let ' be reduct of P. Then one of the following cases holds:
e CSP(IN) = CSP(A), where A is a reduct of Q (P or NP-c)

@ Low, Betw, Cycl or Sep is pp-definable in I' and
CSP(T) is NP-complete.

@ Pol(I") contains e or e< and
CSP(l) is in P.

Consequence:

Poset-SAT(®) is in P or NP-complete.
Given @, it is decidable to tell if Poset-SAT(®) is in P.

| \
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Theorem (MK, Trung Van Pham '16)
Let I' be reduct of P. Then either

@ one of the equations
g1(f(x,y)) = &(f(y,x))

gi(f(x,x,y)) = &(f(x, v, x)) = g3(f(y, x,x))
holds for f € Pol(I'), gi € End(I') and CSP(I') is in P,

@ or [ is homomorphic equivalent to a A, such that:

¢ :Pol(A,cry...,cn) > 1

and CSP(I) is NP-complete.




Thank you!
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